

Lecture Notes in Computer Science 5261
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Nigel Thomas Carlos Juiz (Eds.)

Computer
Performance
Engineering

5th European Performance Engineering Workshop, EPEW 2008
Palma de Mallorca, Spain, September 24-25, 2008
Proceedings

13

Volume Editors

Nigel Thomas
Newcastle University
School of Computing Science
Newcastle upon Tyne, NE1 7RU, UK
E-mail: nigel.thomas@ncl.ac.uk

Carlos Juiz
Universitat de les Illes Balears
Departament de Ciències Matemàtiques i Informàtica
07122 Palma de Mallorca, Spain
E-mail: cjuiz@uib.es

Library of Congress Control Number: 2008935032

CR Subject Classification (1998): C.4, D.4, H.3.4, D.2

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-87411-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-87411-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12522019 06/3180 5 4 3 2 1 0

Preface

This volume of LNCS contains papers presented at the 5th European Perfor-
mance Engineering Workshop held in Palma de Mallorca during September
24–25, 2008.

The workshop is truly international; the European part of the title refers only
to its location. Papers were submitted from Asia, North and South America,
although the majority were from Europe. In all, 39 papers were submitted from
which 16 were chosen following peer review. Every member of the Programme
Committee was responsible for reviewing at least five papers each in a little
over two weeks; a degree of dedication without which the workshop could not
be a success. The selection criteria were harsh and by necessity several excellent
papers were rejected. However, the result is a programme of the highest quality.

The accepted papers reflect the diversity of modern performance engineering.
There were a number of papers presented which tackled theoretical modelling
issues in stochastic process algebra, stochastic activity networks, queueing theory
and the analysis of Markov chains. Other papers addressed practical problems in
communications networks, embedded systems and resource allocation. For the
first time at EPEW there was a paper concerning the evaluation of trust. There
was also a session on software performance engineering, showing the continued
importance of this area within the wider performance community.

We were delighted to have keynote presentations from Boudewijn Haverkort
of Twente University and Stephen Gilmore of the University of Edinburgh. These
talks reflected the state of performance engineering today. Professor Haverkort
presented a personal perspective on 20 years of performance engineering. Dr.
Gilmore presented an overview of recent developments in fluid modelling using
stochastic process algebra; a powerful approach for modelling large-scale prob-
lems in computing and biochemistry.

As Programme Co-chairs we would like to thank everyone involved in making
EPEW 2008 a success: Springer for their continued support of the workshop se-
ries, the local Organizing Committee, the Programme Committee and reviewers,
and of course the authors of the papers submitted, without whom there could
not be a workshop. We thrust that you, the reader, find the papers in this vol-
ume interesting, useful and inspiring, and we hope to see you at future European
Performance Engineering Workshops.

July 2008 Nigel Thomas
Carlos Juiz

Organization

Organizing Committee

General Chair Ramón Puigjaner (University of the Balearic
Islands, Spain)

Workshop Chairs Nigel Thomas (Newcastle University, UK)
Carlos Juiz (University of the Balearic Islands,

Spain)
Local Arrangements: Bartomeu Serra

Pere P. Sancho
Isaac Lera
Carlos Guerrero
Mehdi Khouja

Programme Committee

Jeremy Bradley Imperial College London, UK
Mario Bravetti Università di Bologna, Italy
Lucy Cherkasova HP Labs, USA
Lucia Cloth University of Twente, The Netherlands
Michel Cukier University of Maryland, USA
Tadeusz Czachórski Polish Academy of Sciences, Gliwice, Poland
Jean-Michel Fourneau Université de Versailles, France
Stephen Gilmore University of Edinburgh, UK
Armin Heindl Universität Erlangen-Nürnberg, Germany
Helmut Hlavacs University of Vienna, Austria
András Horváth Università di Torino, Italy
Carlos Juiz Universitat de les Illes Balears, Spain
Tomáš Kalibera Purdue University, USA
Helen Karatza Aristotle University of Thessaloniki, Greece
Leïla Kloul Université de Versailles, France
Samuel Kounev Cambridge University, UK
Fernando López Pelayo University Castilla-La Mancha, Spain
Aad van Moorsel Newcastle University, UK
Manuel Núñez Garcia Universidad Complutense de Madrid, Spain
Ramón Puigjaner Universitat de les Illes Balears, Spain
Marina Ribaudo University of Genova, Italy
Marco Scarpa Universitá di Messina, Italy
Markus Siegle Universität der Bundeswehr München

Germany
Mark Squillante IBM T.J. Watson Research Center, NY, USA

VIII Organization

Ann Tai IA Tech Inc., USA
Miklós Telek Budapest University of Technology and

Economics, Hungary
Nigel Thomas Newcastle University, UK
Sabine Wittevrongel Universiteit Gent, Belgium
Katinka Wolter Humboldt Universität zu Berlin, Germany

Additional Referees

César Andrés
Fernando Cuartero
Stijn De Vuyst
Gregorio Díaz
Katja Gilly
Carlos Guerrero
Richard Hayden
Jane Hillston
Mehdi Khouja
Matthias Kuntz
Isaac Lera
Francesco Longo

Mercedes Merayo
Antonio Puliafito
Carmelo Ragusa
Martin Riedl
Pere P. Sancho
Johann Schuster
Giuseppe Scionti
Michael Smith
Bart Steyaert
Maria Vigliotti
Joris Walraevens
Johannes Zapotoczky

Table of Contents

Invited Papers

Performance and Dependability Evaluation: Successes, Failures and
Challenges . 1

Boudewijn R. Haverkort

Partial Evaluation of PEPA Models for Fluid-Flow Analysis 2
Allan Clark, Adam Duguid, Stephen Gilmore, and Mirco Tribastone

Software Performance Engineering

An Empirical Investigation of the Applicability of a Component-Based
Performance Prediction Method . 17

Anne Martens, Steffen Becker, Heiko Koziolek, and Ralf Reussner

A Calibration Framework for Capturing and Calibrating Software
Performance Models . 32

Xiuping Wu and Murray Woodside

Performance Evaluation of Embedded ECA Rule Engines: A Case
Study . 48

Pablo E. Guerrero, Kai Sachs, Stephan Butterweck, and
Alejandro Buchmann

Stochastic Process Algebra and SANs

Towards State Space Reduction Based on T-Lumpability-Consistent
Relations . 64

Marco Bernardo

A Ticking Clock: Performance Analysis of a Circadian Rhythm with
Stochastic Process Algebra . 79

Jeremy T. Bradley

Assembly Code Analysis Using Stochastic Process Algebra 95
Lamia Djoudi and Lëıla Kloul

Product Form Steady-State Distribution for Stochastic Automata
Networks with Domino Synchronizations . 110

Jean-Michel Fourneau

X Table of Contents

Performance Query Specification and Measurement

State-Aware Performance Analysis with eXtended Stochastic Probes . . . 125
Allan Clark and Stephen Gilmore

Computer and Communications Networks

Natural Language Specification of Performance Trees 141
Lei Wang, Nicholas J. Dingle, and William J. Knottenbelt

Recurrent Method for Blocking Probability Calculation in Multi-service
Switching Networks with BPP Traffic . 152

Mariusz G�l ↪abowski

An Approximate Model of the WCDMA Interface: Servicing a Mixture
of Multi-rate Traffic Streams with Priorities . 168

Damian Parniewicz, Maciej Stasiak, Janusz Wiewióra, and
Piotr Zwierzykowski

Queueing Theory and Markov Chains

Performance Analysis of Dynamic Priority Shifting 181
Philipp Reinecke, Katinka Wolter, and Johannes Zapotoczky

Performance Analysis of a Priority Queue with Place Reservation and
General Transmission Times . 197

Bart Feyaerts and Sabine Wittevrongel

Analysis of BMAP/G/1 Vacation Model of Non-M/G/1-Type 212
Zsolt Saffer and Miklós Telek

Applications

Stochastic Bounds for Partially Generated Markov Chains: An
Algebraic Approach . 227

Ana Bušić and Jean-Michel Fourneau

Evaluation of P2P Algorithms for Probabilistic Trust Inference in a
Web of Trust . 242

Huqiu Zhang and Aad van Moorsel

Approximation for Multi-service Systems with Reservation by Systems
with Limited-Availability . 257

Maciej Stasiak and S�lawomir Hanczewski

Author Index . 269

Performance and Dependability Evaluation:

Successes, Failures and Challenges

Boudewijn R. Haverkort

University of Twente,
Centre for Telematics and Information Technology,

Faculty for Electrical Engineering, Mathematics and Computer Science,
P.O. Box 217, 7500 AE Enschede, Netherlands

http://dacs.cs.utwente.nl/

Abstract. Over the last 40 years, the field of model-based performance
and dependability evaluation has seen important developments, successes
and scientific breakthroughs. However, the field has not matured into a
key engineering discipline which is heavily called upon by computer sys-
tem and software engineers, even though it is well-known that already
the use of simple analytical models can result in better insight in system
performance. In the area of communication system design, performance
evaluation has become more of a mainstream activity, albeit almost ex-
clusively using discrete-event simulation techniques.

What circumstances made that almost all of our excellent work on
analytical performance and dependability evaluation did not find the
acceptance and use we think it deserves?

On the basis of an historical account of the major developments in
the area over the last 40 years, I will address probable reasons for the
relatively moderate success and acceptance of model-based performance
and dependability evaluation. What did we do right, what did we do
wrong? Which circumstances led to successes, and where did we fail?

Based on the gathered insights, I will discuss upcoming challenges for
the field and recommend research directions for the decade to come.

Keywords: Dependability evaluation, performance evaluation, Markov
chains, model checking, scalability, security, verification.

N. Thomas and C. Juiz (Eds.): EPEW 2008, LNCS 5261, p. 1, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://dacs.cs.utwente.nl/

Partial Evaluation of PEPA Models for

Fluid-Flow Analysis

Allan Clark, Adam Duguid, Stephen Gilmore, and Mirco Tribastone

LFCS, University of Edinburgh

Abstract. We present an application of partial evaluation to perfor-
mance models expressed in the PEPA stochastic process algebra [1]. We
partially evaluate the state-space of a PEPA model in order to remove
uses of the cooperation and hiding operators and compile an arbitrary
sub-model into a single sequential component. This transformation is
applied to PEPA models which are not in the correct form for the ap-
plication of the fluid-flow analysis for PEPA [2]. The result of the trans-
formation is a PEPA model which is amenable to fluid-flow analysis but
which is strongly equivalent [1] to the input PEPA model and so, by an
application of Hillston’s theorem, performance results computed from
one model are valid for the other. We apply the method to a Markovian
model of a key distribution centre used to facilitate secure distribution
of cryptographic session keys between remote principals communicating
over an insecure network.

1 Introduction

Fluid-flow approximation of PEPA models [2] enables the numerical analysis of
models of vast scale using ordinary differential equations (ODEs). The model
sizes which can be analysed using transformation into an ODE representation
pass effortlessly beyond the maximum attainable using exact discrete-state rep-
resentations such as continuous-time Markov chains. However, fluid-flow analysis
is applicable to PEPA models in a particular form where the model is structured
as the cooperation of replicated copies of sequential components. For example,
if P , Q and R are sequential PEPA components available in M , N and O repli-
cations and K and L are cooperation sets then the model

P [M] ��
K

(
Q[N] ��

L
R[O]

)
is immediately suitable for fluid-flow analysis but the model

P [M] ��
K

(
(Q ��

L
R)[N]

)
is not, because of the use of the cooperation operator (��) nested inside the
array of N replications. We use partial evaluation to transform the unsuitable
model into an equivalent model of the form:

P [M] ��
K

QR[N]

N. Thomas and C. Juiz (Eds.): EPEW 2008, LNCS 5261, pp. 2–16, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Partial Evaluation of PEPA Models for Fluid-Flow Analysis 3

The new model has a new sequential component QR which exactly respects
the interaction between the original Q and R. The new sequential component is
generated in such a way that we can recover the states of Q and R from the state
of QR. The transformation can be applied compositionally to a model to generate
an equivalent which is suitable for fluid-flow analysis without generating the full
state-space of the original model. Specifically, the cost of the transformation
depends only on the form of the components Q and R and does not depend on
the values of M or N .

The original contributions of the present paper are the following.

1. We present a novel application of Hillston’s theorem to the partial evaluation
of a PEPA model. The theorem [1] guarantees that the strong equivalence
relation of PEPA is a congruence for the PEPA process algebra and thus the
partially evaluated model is equivalent to the original.

2. We present four styles of analysis of the same model three of which allow
the analysis at large scales. The model analysed represents the Needham-
Schroeder-Lowe protocol. We compare the performance results obtained us-
ing all four analysis methods.

2 Case Study: Key Distribution Centres

Key distribution centres enable secure communication between remote principals
across an insecure network. The distribution centre acts as a trusted third party,
allowing users to register a key with the centre and use a robust cryptographic
protocol to establish a secure communication between two principals who have no
previous communication history and no secure shared communications channels.

One possible candidate for the chosen cryptographic protocol is the Needham-
Schroeder-Lowe protocol [3] which hardens the Needham-Schroeder protocol [4]
against replay attacks. The goal of the protocol is to enable secure communi-
cation between Alice and Bob. The protocol has five steps, which we describe
informally first.

– Alice sends a message to the server requesting a session with Bob.
– The server generates a new session key KAB, encrypted under Alice’s regis-

tered key, KAS , together with a copy encrypted for Bob.
– Alice forwards the copy on to Bob, who can decrypt it.
– Bob sends a random number (a nonce) to Alice, encrypted under the session

key.
– Alice makes a small change to the nonce and sends it back to Bob.

The traditional representation of such a protocol is as a narration, setting out
more methodicially the information presented above. In the notation used below
X → Y denotes a communication from X to Y , x1, . . . , xn denotes a tuple of
n values and {x1, . . . , xn}K denotes a tuple of n values encrypted under the
cryptographic key K.

4 A. Clark et al.

(request) 1. A → S : A, B, NA

(response) 2. S → A : {NA, KAB, B, {KAB, A}KBS}KAS

(sendBob) 3. A → B : {KAB, A}KBS

(sendAlice) 4. B → A : {NAB}KAB

(confirm) 5. A → B : {NAB − 1}KAB

After these five steps are complete Alice and Bob can use the key in a secure
session (usekey).

A representation of the protocol such as this is adequate for the analysis of the
correctness of function of the protocol using a logic such as the BAN logic [5] but
it is not suitable for performance analysis. Time is abstracted away in the model
above, as it is in classical process algebras. In a stochastic process algebra such as
PEPA [1] the communication events and the encryption steps have an expected
average duration. Performance results such as response time and utilisation can
be calculated from a PEPA model of a key distribution centre, as shown in [6]
and [7]. Conversely, data is abstracted away in the PEPA model and so it is not
suitable for correctness analysis1.

A PEPA model of a key distribution centre such as the one shown in Figure 1
can be used to produce a finite discrete-state representation of the system with
quantified durations associated to each activity.

KDC def
= (request , rq).KDC + (response , rp).KDC

Alice def
= (request , rq).(response , rp).Alice1

Alice1
def
= (sendBob, rB).Alice2

Alice2
def
= (sendAlice , ∞).(confirm, rc).Alice3

Alice3
def
= (usekey , ru).Alice

Bob def
= (sendBob, ∞).Bob1

Bob1
def
= (sendAlice , rA).(confirm , ∞).Bob2

Bob2
def
= (usekey , ∞).Bob

System def
= KDC ��

L

�
(Alice ��

M
Bob)[N]

�

where L = { request , response }
M = { sendBob , sendAlice, confirm , usekey }

Fig. 1. PEPA model of the Key Distribution Centre presented in [6]

The derivation graph underlying this PEPA model can be converted into a
Continuous-Time Markov Chain (CTMC) which can be readily solved to find
the steady-state distribution over all of the reachable states of the model [8]
or analysed to determine transient probability distributions and response-time
profiles [9].
1 The original Needham-Schroeder protocol and the modified Needham-Schroeder-

Lowe protocol would have the same representation in PEPA.

Partial Evaluation of PEPA Models for Fluid-Flow Analysis 5

Exact discrete-state models of complex systems face the well-known problem
of state-space explosion where, as the complexity of the system under study
increases, there is an exponential growth in the state-space of the underlying
model. Out-of-core [10] and disk-based solution methods [11] allow modellers to
tolerate very large state-spaces but at the cost of greater and greater numerical
solution times.

As the number of paired principals (N) in the PEPA model increases the
machine representation of the probability distribution requires more and more
storage and longer and longer computation times to calculate. The size of the
state space of the Markovian model is 6N which grows very rapidly with N .
Fortunately we have available in the PEPA Eclipse Plug-in an implementation
of the state-space aggregation algorithm for PEPA [12] which allows us to better
cope with increases in N . The state-space sizes before and after aggregation are
shown in Table 1.

Table 1. Full and aggregated statespace sizes as calculated by the PEPA Eclipse
Plugin [8]

Full Aggregated
state-space state-space

N size size

1 6 6
2 36 21
3 216 56
4 1,296 126
5 7,776 252
6 46,656 462
7 279,936 792
8 1,679,616 1,287
9 10,077,696 2,002

10 60,466,176 3,003
11 362,797,056 4,368
12 2,176,782,336 6,188 1

 10

 100

 1000

 10000

100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 2 4 6 8 10 12

N

Full statespace

Aggregated statespace

Use of the aggregation algorithm allows us to tolerate larger state-spaces but
this too will reach a limit and at that point we will need to rely on other tech-
niques to analyse the model. In this paper we make use of three techniques;
fluid-flow analysis, stochastic simulation and reduction to a closed queueing net-
work, to allow us to continue to analyse the model past the limit on the number
of clients imposed by the state-space explosion problem on the CTMC analysis.
For two of the techniques the model must first be partially evaluated and this
is discussed in the next section. Following this we detail the analysis by each
method.

3 Partial Evaluation

Our model of the key distribution centre shown in Figure 1 exhibits synchroni-
sation nested within an array and is thus in its present form unsuitable for fluid-
flow analysis. However we can apply the partial evaluation technique described

6 A. Clark et al.

in the introduction transforming the synchronisation: (Alice ��
M

Bob) into an
equivalent component: AliceBob.

This is achieved by considering this synchronisation as an entire model and
deriving the entire state-space of this smaller model. Deriving the entire state-
space of this synchronisation transforms multiple (in this case two) synchronised
components into a single sequential component. The number of states in the new
sequential component depends only on the form and synchronised activies of the
involved components and not on any part of the larger model containing the
original cooperation. In particular if the synchronisation occurs nested within
an array – as is the case with our model – the partial evalation is the same
regardless of the size of the array.

KDC def
= (request , rq).KDC + (response , rp).KDC

AliceBob def
= (request , rq).AliceBob1

AliceBob1
def
= (response , rp).AliceBob2

AliceBob2
def
= (sendBob, rB).AliceBob3

AliceBob3
def
= (sendAlice, rA).AliceBob4

AliceBob4
def
= (confirm , rc).AliceBob5

AliceBob5
def
= (usekey , ru).AliceBob

System def
= KDC ��

L
AliceBob[N]

where L = { request , response }

Fig. 2. Partially evaluated PEPA model of the Key Distribution Centre

When we apply partial evaluation to the PEPA model shown in Figure 1 we
obtain the model in Figure 2. There is a one-to-one correspondence between the
states of the original synchronised components (Alice ��

M
Bob) and the sequen-

tial component AliceBob as indicated in Table 2. In turn there is a one-to-one
correspondence between the states of the original PEPA model and the states
of the partially-evaluated PEPA model.

Table 2. Bisimilar states in the original and partially-evaluated PEPA models

Original Partially-evaluated
PEPA model PEPA model

Alice Bob AliceBob
(response , rp).Alice1 Bob AliceBob1

Alice1 Bob1 AliceBob2

Alice2 Bob1 AliceBob3

(confirm , rc).Alice3 (confirm, ∞).Bob2 AliceBob4

Alice3 Bob2 AliceBob5

Partial Evaluation of PEPA Models for Fluid-Flow Analysis 7

4 Analysis

After the partial evaluation of the key distribution centre PEPA model we have
four distinct forms of analysis which we may apply:

1. exact discrete-state analysis by solving the underlying continuous-time
Markov chain;

2. manually reduce and approximate the model to a closed queueing system as
is done in [6];

3. approximate discrete-state analysis by stochastic simulation of the underly-
ing continuous-time Markov chain; and

4. approximate continuous-state analysis by numerical integration of the un-
derlying fluid-flow differential equations.

We perform each of these in turn on the model of the key distribution centre.

4.1 Markovian Analysis

The first programme of analysis which we undertake is to examine the probabil-
ity density function (pdf) and cumulative density function (cdf) for a passage
through the system behaviour. For this analysis we have used the International
PEPA Compiler (ipc) [9] tool suite.

The measurement which we make is from the end of an occurrence of the
request activity to the end of a confirm activity. This measures the time it takes
to restart a session and gives us our notion of response time for this system.
Note though that in this passage only the response activity cooperates with the
server the other activities are performed within a single AliceBob component
and hence the delay from these activities is unaffected by the number of clients
in the system. This is an important performance metric since sessions may need
to be restarted frequently. This is necessary because after a period of continued
use a session key should not be considered safe due to too many ciphertexts
being available to an attacker.

We vary the rate ru (the rate of the usekey activity). This essentially varies
the duration of a session (usekey is the session). We are measuring between the
request and confirm activities as performed by only the first Alice/Bob pairing
because otherwise we have essentially a meaningless measurement. The ability
to isolate and probe a particular Alice/Bob pair is given to us by the use of
location-aware stochastic probes [13]. The results are shown in Figure 3.

Because we are using the full numerical solution technique we are limited in
the number of clients that may participate in the model. Because of the low
number of clients the centre is able to cope with demand very well and varying
the rate at which keys are used – and therefore the rate at which requests arrive
– does not have a significant impact on the passage of interest. This further
motivates us to apply large state-space size analysis techniques.

The numerical solution of the underlying Markov chain has allowed us to
obtain response-time quantiles. However we can also use the Markov chain to
compute the steady-state probability distribution, i.e. the long-term probability

8 A. Clark et al.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

Main::rp
Time

 0

 0.05

 0.1

 0.15

 0.2

 0.25

Pd

A pdf Sensitivity graph

 0.5

 1

 1.5

 2

 2.5
 0

 1
 2

 3
 4

 5
 6

 7
 8

 9
 10

Pd
 0

 0.05

 0.1

 0.15

 0.2

 0.25

Main::ru
Time

 0

 0.05

 0.1

 0.15

 0.2

 0.25

Pd

A pdf Sensitivity graph

 0.01
 0.015

 0.02
 0.025

 0.03
 0.035

 0.04
 0.045

 0.05
 0.055

 0
 1

 2
 3

 4
 5

 6
 7

 8
 9

 10

Pd

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

 0.5
 1

 1.5
 2

 2.5 0
 1

 2
 3

 4
 5

 6
 7

 8
 9

 10

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

Prob

A cdf Sensitivity graph

Main::rp

Time

Prob

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0
 1

 2
 3

 4
 5

 6
 7

 8
 9

 10

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

Prob

A cdf Sensitivity graph

Main::ru

Time

Prob

Fig. 3. The top two graphs depict the probability density function (pdf) and the bot-
tom two graphs the cumulative density function (cdf) of the passage from usekey to
confirm for a particular Alice/Bob pair. In the graphs on the left we vary the rate at
which the server responds while in the graphs on the right we vary the rate at which
session keys are consumed and hence the rate at which requests arrive at the server.

of being in each state. This information allows us to compute throughput and
utilisation which for this model will give us the average number of clients wait-
ing to be processed by the server and the average response-time. The results
are computed using the PEPA Eclipse Plug-in [8] and are shown together in
comparison to the same measures as computed using the other three analysis
techniques in Section 4.3.

4.2 Analytical Solution

We have seen that it is possible to transform the original model into one suitable
for analysis using ordinary differential equations and stochastic simulation while
being certain that we are analysing an equivalent model. Another technique
is to continue simplifying the model until we have one which may be solved
analytically. We may lose the exact correspondence between the original model
and simplified model however if we are careful in our transformations we may
still relate the performance measurements obtained from the simplified model to
the original model.

In the case of the key distribution centre it is possible to reduce the model
to that of a simple closed queueing system. This simpler model has one queue
station representing the key distribution centre and each client performing an

Partial Evaluation of PEPA Models for Fluid-Flow Analysis 9

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 A
lic

eB
ob

1
C

om
po

ne
nt

s

N

CTMC

SSA

ODE

analytic

 0.01

 0.1

 1

 10

 100

 1000

 1 10 100 500A
ve

ra
ge

 A
lic

eB
ob

1
C

om
po

ne
nt

s
(lo

g
ax

is
)

N (log axis)

CTMC

SSA

ODE

analytic

(a) (b)

Fig. 4. The average number of AliceBob1 components varied as the number of client
pairs (N) is increased, using all of the separate analysis techniques

 0

 10

 20

 30

 40

 50

 60

 70

 0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 R
es

po
ns

e
T

im
es

N

CTMC

SSA

ODE

analytic

 1

 10

 100

 1000

 1 10 100 500

A
ve

ra
ge

 R
es

po
ns

e
T

im
es

(lo
g

ax
is

)

N (log axis)

CTMC

SSA

ODE

analytic

(a) (b)

Fig. 5. The average response times measured as the number of clients is increased

exponential delay after being serviced before returning to the queue. This tech-
nique is described in detail in [6]. This represents only an approximate solution
because in the original model each client pair performs a sequence of activities
before returning to the queue. This sequence of (exponentially delayed) activities
will give rise to an Erlang distributed delay.

From this closed queueing system we can compute the average number of
clients waiting in the queue and from this the average response time. As men-
tioned above these results are shown for all analysis techniques in Section 4.3.

4.3 Simulation and Fluid-Flow Analysis

The work in the early part of this paper was concerned with transforming the
PEPA model of the key distribution centre into a form which was suitable for
ODE analysis. We reap the benefits of this work here because we can efficiently
compute mean trajectories through the model state space for large-scale models.

10 A. Clark et al.

 150

 200

 250

 300

 350

 400

 450

 500

 300
 350

 400
 450

 500 0.005
 0.01

 0.015
 0.02

 0.025
 0.03

 0.035
 0.04

 0.045
 0.05

 0.055

150

200

250

300

350

400

450

500

waiting

N

usekey rate

waiting

 0

 200

 400

 600

 800

 1000

 1200

 1400

 300
 350

 400
 450

 500 0.005
 0.01

 0.015
 0.02

 0.025
 0.03

 0.035
 0.04

 0.045
 0.05

 0.055

 0

 200

 400

 600

 800

 1000

 1200

 1400

response time

N

usekey rate

response time

)b()a(

Fig. 6. The sensitivity at varying values of N of the rate of key consumption (the rate
of the usekey activity) as measured by the ODE analysis

In this section we perform those analyses with the partially-evaluated model.
The graphs in Figure 4 show the average number of AliceBob1 components in
the system varying as we increase N – the total number of Alice and Bob pairs
in the system. This gives us the average number of clients that are waiting to be
served by the key distribution center as a function of the total number of clients.
Results are shown for all four analysis methods though the numerical solution
via a Markov chain has results only up to N = 32, the limit before solving the
Markov chain becomes too expensive. The graph on the left highlights the small
values of N ≤ 50 and the graph on the right depicts all values of N ≤ 500.

Similarly the graphs in Figure 5 show average response-time as computed
using all four analysis methods. Once again the Markov chain solution is limited
to values of N ≤ 32 and correspondingly the graph on the left highlights the
smaller values of N while the graph on the right allows N to increase to 500.

Encouragingly we see that as N increases the agreement between the mea-
surements improves. At very small values of N the ODE differs from the other

 0

 0.5

 1

 1.5

 2

 2.5

 5 10 15 20 25 30

A
bs

ol
ut

e
er

ro
r

N

SSA

ODE

analytic

 0

 2

 4

 6

 8

 10

 12

 5 10 15 20 25 30

R
el

at
iv

e
er

ro
r

(%
)

N

SSA

ODE

analytic

(a) (b)

Fig. 7. Each graph plots the difference in measured average number of waiting clients
for the given analysis method against the Markov chain solution as the number of
clients N is increased. The graph on the left (a) depicts the absolute error while the
graph on the right (b) depicts the error relative to the number of clients.

Partial Evaluation of PEPA Models for Fluid-Flow Analysis 11

methods, whilst the queueing method, stochastic simulation and Markov chain
method continue to show good agreement for all measured values of N . This
provides us with confidence that the stochastic simulation analysis is providing
accurate results and hence we use this to compare how well our ODE analysis
is performing at large values of N where it is not possible to compare with the
Markov chain solution. We are also pleased to note that the queueing and ODE
methods begin to show agreement with the Markov chain solution (and therfore
also the simulation results) before the limit of the Markov chain solution. In the
following section we give a more detailed comparison of the results.

Sensitivity Analysis. Recall from Section 4.1 that we performed sensitivity
analysis for small values of N using the Markovian solution method of analysis.
We found that varying the rate at which the server responds affects the response
time as one would expect. However varying the rate at which keys are consumed –
and therefore the rate at which requests arrive at the server – did not significantly
affect the response time. We reasoned that this was because N was so low that
whenever a client made a request there was very likely to be no other clients
already waiting in the queue even as we increased the rate of key consumption.
To achieve any noticable effect the rate that the clients use the key must be set
unrealistically high.

We have repeated this sensitivity analysis at higher levels of N in order to
understand the influence of varying the rate of key consumption. The graphs
in figure Figure 6 show the effect that varying this rate has on the number of
clients waiting (left) and the response time (right). Here we can see a significant
effect caused by changing the rate at which requests arrive at the server. Having
done this we can conclude that although the Markovian solution allows for very
accurate results, if the number of clients is unrealistically low, any conclusion
obtained from sensitivity analysis of the Markovian method cannot be assumed
to apply at larger values of N . Thus our analysis using ordinary differential
equations and stochastic simulation is a necessary endeavour.

5 Comparison

In the previous section we compared the results from the four methods of analy-
sis, noting disagreement at low values of N (N <≈ 25) between the ODE analysis
and other methods. For higher values of N the data indicated better agreement
over all four methods. In this section we look closer at the differences between
the different analyses.

Taking the Markovian analysis as our yardstick we can compare how well
the other three analysis methods perform for values of N ≤ 32. The graphs in
Figure 7 show the error in the measured average number of waiting clients. The
graphs in Figure 8 show the error as compared with the Markovian solution in
the measured response time. In both sets of graphs we depict in the left graph
the absolute error, as the difference between the given analysis method and
Markovian solution, while in the right hand graph this value is given relative to

12 A. Clark et al.

 0

 1

 2

 3

 4

 5

 6

 7

 5 10 15 20 25 30

A
bs

ol
ut

e
er

ro
r

N

SSA

ODE

analytic

 0

 10

 20

 30

 40

 50

 60

 5 10 15 20 25 30

R
el

at
iv

e
er

ro
r

(%
)

N

SSA

ODE

analytic

(a) (b)

Fig. 8. Each graph plots the difference in measured response time for the given analysis
method against the Markov chain solution as the number of clients N is increased. The
graph on the left (a) depicts the absolute error while the graph on the right (b) depicts
the error relative to the response-time as calculated using the Markov chain solution.

 0

 5

 10

 15

 20

 25

 30

 35

 0 50 100 150 200 250 300

A

lic
e

an
d

B
ob

1
(S

S
A

)

Time

N=5
N=10
N=15
N=20
N=25
N=30
N=50

 0

 5

 10

 15

 20

 25

 30

 35

 0 50 100 150 200 250 300

A

lic
e

an
d

B
ob

1
(O

D
E

)

Time

N=5
N=10
N=15
N=20
N=25
N=30
N=50

(a) (b)

Fig. 9. Time-series data for SSA and ODE, graph (a) and (b) respectively, for various
values of N

the number of clients in the system. This is because, particularly in the case of
average number of clients waiting, an error of 5 is more significant when there
are only 15 clients in the system as when there are over 100. In the case of the
response-time error normalising by the number of clients does not make sense
so we instead divide the error by the response-time as calculated by the Markov
chain solution.

The disagreement seen in Figures 4 and 5 can clearly be seen here, peaking
at approximately 12% around N = 20 for the ODE analysis. The SSA analysis
shows very good agreement with the CTMC, shown by a maximum error of
0.1% for N = 1 . . . 32. What the previous graphs failed to show was the minor,
but increasing error between the CTMC and analytical analysis. What is unclear
from Figure 7 is whether the error between the CTMC and analytical approaches
has peaked or not. If we assume the level of error between CTMC and SSA were
to remain constant, as we did in Section 4.3, then we can be confident comparing

Partial Evaluation of PEPA Models for Fluid-Flow Analysis 13

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 50 100 150 200 250 300

A
bs

ol
ut

e
er

ro
r

Time

N=5
N=10
N=15
N=20
N=25
N=30
N=50

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 50 100 150 200 250 300

R
el

at
iv

e
er

ro
r

(%
)

Time

N=5
N=10
N=15
N=20
N=25
N=30
N=50

(a) (b)

Fig. 10. Graphs for absolute error (a) and relative error (b) for N = 5 . . . 50

 0

 2

 4

 6

 8

 10

 12

 0 100 200 300 400 500 600 700 800

A
bs

ol
ut

e
er

ro
r

Time

N=50
N=100
N=150
N=200
N=250
N=300

 0

 1

 2

 3

 4

 5

 6

 0 100 200 300 400 500 600 700 800

R
el

at
iv

e
er

ro
r

(%
)

Time

N=50
N=100
N=150
N=200
N=250
N=300

(a) (b)

Fig. 11. Graphs for absolute error (a) and relative error (b) for N = 50 . . . 300

the SSA and the analytical method. This comparison shows an error of no more
than 1.4% for N = 1 . . . 500. Looking at response times (Figure 8) we see that
for lower values of N the error can be as high as 50% and a peak of 4.5% for the
analytical method.

So far comparison has been at steady-state; however SSA and ODE analysis
both allow comparison for any value of t. Figure 9 shows the time-series data
for the number of waiting clients (AliceBob1), and Figure 10 the absolute and
relative error for N = 5 . . . 50. Figure 11 shows the absolute and relative error
for N = 50 . . . 300.

What is clear from these graphs is that the reported error for the steady-state
is not the peak error seen. From Figure 7 we could see an error of approximately
12% when N ≈ 20, whereas the peak value seen from this sample of N is closer
to 15% when N = 5. Figure 11 shows that the peak error observed decreases
as N increases, showing a peak error of approximately 3.5% for N = 300, and
a steady-state error of 0.2%. If the graph was extended to show N = 500 the
peak error seen would be approximately 3% and a steady-state error of less than
0.1%.

14 A. Clark et al.

6 Conclusions

By applying partial evaluation of the Markovian state-space of a PEPA model
we have been able to transform a model unsuitable for fluid-flow analysis into
one for which fluid-flow analysis is immediately applicable. Fluid-flow analysis
allows us to examine the dynamics of models of large-scale at low computational
cost. This has provided us with four possible analysis methods for this model
each with a distinct set of advantages and disadvantages:

CTMC. Compiling the model to the CTMC allows for the most detailed analysis
of the model. We can obtain passage-time quantiles which none of the other
analysis methods yet support. The disadvantage though is clear - the CTMC
representation suffers from the well known state-space explosion problem. We
can mitigate this to some degree using state-space aggregation. In this particular
example we could cope with values of N up to 32.

Analytical Approximation. By first manually reducing the model to an equivalent
closed queueing network we can cope with values of N much larger than for
the CTMC based analysis. We can comfortably cope with values of N over
a thousand. The disadvantage of such an approach is that it is available to
only a specific kind of model, namely those which may be reduced to a closed
queueing system. Additionally such a transformation is model dependent and
therefore must be done manually. In each case the modeller must work to show
that the simplified model is indeed equivalent to the original model or that the
approximation is close enough.

Simulation. We can use stochastic simulation to analyse our model. This again
allows us to cope with larger state space sizes. The drawback in this case is
that our results will only ever be an approximation to the true results. As our
accuracy requirements increase so do the number of simulations which must be
run and thus the computation time.

Fluid-flow. The approach we have used in this paper is to partially-evaluate
the model into a form suitable for translation into ordinary differential equa-
tions. This has similar advantages to the reduction to a closed queueing network.
However the partial evaluation of the parallel sub-components is a well defined
transformation which may be automated. Moreover all partially-evaluated mod-
els are known to be equivalent to their original models. The disadvantage of this
approach is that for the solution to the ODEs to be accurate we require a large
number of components. That is the model cannot be used for small values of N .
This is in direct contrast to the CTMC method which can be used effectively for
small values of N but cannot cope with larger values of N .

We believe that the combination of CTMC analysis for small values of N and
ODE analysis – via partial evaluation of parallel sub-components where required
– forms an important partnership in the analysis of large scale parallel models.
The CTMC analysis can be used not only for analysis for small values of N

Partial Evaluation of PEPA Models for Fluid-Flow Analysis 15

where the ODE analysis is inappropriate but also to gain greater insight into
the properties of the model since the CTMC analysis permits such analyses as
the computation of passage-time quantiles. Meanwhile analysis for large values
of N can be obtained through fluid-flow analysis.

In doing such a combination of analyses the modeller will likely look for the
crossover point. The crossover point is the value of N at which the ODE analysis
agrees with the CTMC analysis. In general we would like this value to be lower
than the upper bound on N for the CTMC analysis. Otherwise the modeller
must guess at the crossover point though stochastic simulation can be used to
provide some assurance. Through our use of aggregation of the state-space of
the model we are hopeful that many models fall into the former category.

Acknowledgements: This work has been partially sponsored by the project SEN-
SORIA, IST-2005-016004.

References

1. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge
University Press, Cambridge (1996)

2. Hillston, J.: Fluid flow approximation of PEPA models. In: Proceedings of the Sec-
ond International Conference on the Quantitative Evaluation of Systems, Torino,
Italy, September 2005, pp. 33–43. IEEE Computer Society Press, Los Alamitos
(2005)

3. Lowe, G.: An attack on the Needham-Schroeder public key authentication protocol.
Information Processing Letters 56(3), 131–136 (1995)

4. Needham, R., Schroeder, M.: Using encryption for authentication in large networks
of computers. Communications of the ACM 21(12), 993–999 (1978)

5. Burrows, M., Abadi, M., Needham, R.M.: A logic of authentication. ACM Trans-
actions on Computing Systems 8(1), 18–36 (1990)

6. Zhao, Y., Thomas, N.: Approximate solution of a PEPA model of a key distribution
centre. In: Kounev, S., Gorton, I., Sachs, K. (eds.) SIPEW 2008. LNCS, vol. 5119,
pp. 44–57. Springer, Heidelberg (2008)

7. Zhao, Y., Thomas, N.: Fluid flow analysis of a model of a secure key distribution
centre. In: Argent-Katwala, A., Dingle, N.J., Harder, U. (eds.) Proceedings of the
24th UK Performance Engineering Workshop, July 2008, pp. 160–171. Imperial
College London (2008)

8. Tribastone, M.: The PEPA Plug-in Project. In: Harchol-Balter, M., Kwiatkowska,
M., Telek, M. (eds.) Proceedings of the 4th International Conference on the Quan-
titative Evaluation of SysTems (QEST), September 2007, pp. 53–54. IEEE, Los
Alamitos (2007)

9. Clark, A.: The ipclib PEPA Library. In: Harchol-Balter, M., Kwiatkowska, M.,
Telek, M. (eds.) Proceedings of the 4th International Conference on the Quan-
titative Evaluation of SysTems (QEST), September 2007, pp. 55–56. IEEE, Los
Alamitos (2007)

10. Kwiatkowska, M., Mehmood, R., Norman, G., Parker, D.: A symbolic out-of-core
solution method for Markov models. In: Proc. Workshop on Parallel and Distrib-
uted Model Checking (PDMC 2002). Electronic Notes in Theoretical Computer
Science, vol. 68.4. Elsevier, Amsterdam (2002)

16 A. Clark et al.

11. Knottenbelt, W.J., Harrison, P.G.: Distributed disk-based solution techniques for
large Markov models. In: Proc. 3rd International Workshop on the Numerical Solu-
tion of Markov Chains (NSMC 1999), Zaragoza, Spain, September 1999, pp. 58–75
(1999)

12. Gilmore, S., Hillston, J., Ribaudo, M.: An efficient algorithm for aggregating PEPA
models. IEEE Transactions on Software Engineering 27(5), 449–464 (2001)

13. Argent-Katwala, A., Bradley, J., Clark, A., Gilmore, S.: Location-aware quality
of service measurements for service-level agreements. In: Barthe, G., Fournet, C.
(eds.) TGC 2007. LNCS, vol. 4912, pp. 222–239. Springer, Heidelberg (2008)

An Empirical Investigation of the Applicability of a
Component-Based Performance Prediction Method

Anne Martens1, Steffen Becker2, Heiko Koziolek3, and Ralf Reussner1

1 Chair for Software Design and Quality
Am Fasanengarten 5, University of Karlsruhe (TH), 76131 Karlsruhe, Germany

2 FZI Forschungszentrum Informatik
Haid-und-Neu-Straße 10-14, 76131 Karlsruhe, Germany

3 ABB Corporate Research, Wallstadter Str. 59, 68526 Ladenburg, Germany
{martens,sbecker,koziolek,reussner}@ipd.uka.de

Abstract. Component-based software performance engineering (CBSPE) meth-
ods shall enable software architects to assess the expected response times,
throughputs, and resource utilization of their systems already during design. This
avoids the violation of performance requirements. Existing approaches for CB-
SPE either lack tool support or rely on prototypical tools, who have only been
applied by their authors. Therefore, industrial applicability of these methods is
unknown. On this behalf, we have conducted a controlled experiment involving
19 computer science students, who analysed the performance of two component-
based designs using our Palladio performance prediction approach, as an example
for a CBSPE method. Our study is the first of its type in this area and shall help to
mature CBSPE to industrial applicability. In this paper, we report on results con-
cerning the prediction accuracy achieved by the students and list several lessons
learned, which are also relevant for other methods than Palladio.

Keywords: Performance Prediction, Empirical Study, Controlled Experiment.

1 Introduction

A benefit of component-based development is the possibility to reason on properties of
the complete systems based on component specifications supplied by individual com-
ponent developers. With this approach, it is possible for software architects to assess the
functional and extra-functional (e.g., performance, reliability) properties of a component-
based system during early development stages. To do so, software architects combine
component specifications to form architecture specifications. The specifications are de-
sign models (e.g. in UML) annotated with performance properties. After modelling the
architecture, software architects can check performance predictions from tools analysing
the architecture specifications against their requirements. This may avoid implementing
designs with poor extra-functional properties and prevent subsequent costs for restruc-
turing an implementation after detecting design-related flaws.

Researchers have developed several methods in this context, which aim at
performance (i.e., response times, throughput, resource utilisation) predictions for
component-based designs [4]. However, there are few real-life case studies involving

N. Thomas and C. Juiz (Eds.): EPEW 2008, LNCS 5261, pp. 17–31, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

18 A. Martens et al.

these compo-nent-based methods, which still lack industrial maturity. Several methods
(e.g., [8,10,20]) simply lack tool support, while other methods (e.g., [5,6,7,23]) rely
on prototypical implementations, which only have been used by their authors and re-
quire specialist knowledge. Therefore, their applicability in an industrial setting involv-
ing typical developers is unknown. Further methods for component-based performance
analysis are outside the scope of this paper as they are measurement-based (i.e. pre-
dictions are based on observation of the implemented system’s performance) and do
not target early design stages, and also do not involve reusable component performance
specifications (e.g., [13,15]).

To investigate the applicability, we conducted a controlled experiment with 19 com-
puter science students, who analysed the performance of two different component-
based designs using the Palladio method [4] as an example for a CBSPE method. We
also let the students apply the well-known SPE method [21], which is not specific for
component-based systems, on the same designs and compared the results. The study
involved training the students in the methods and the accompanying tools as well as
designing several architectural design alternatives for the analysed systems, which the
students evaluated for their performance properties.

In a former paper [17], we reported on results concerning the effort needed by the
students to model and analyse the system. We found that the effort was less than twice
as high as for a method without reusable, component-based performance specifications
(i.e., the SPE method). Therefore, the effort of creating a component performance speci-
fication could already be justified, if the component and its performance model is reused
at least once. For reasons of self-containedness, sections 2, 3.2 - 3.4, 5 and 6 are similar
in both papers, as they describe and discuss the common experiment setting.

For this paper, we have analysed the data collected during the experiment further
(also see [16]). We focus on the accuracy of the predictions achieved by the students
compared to a sample solution. Additionally, we searched for reasons for the achieved
prediction accuracy by analysing the models created during the experiment and evalu-
ating questionnaires filled out by the participants after the experiment. While the results
have been obtained for a single CBSPE method, they are also interesting for the authors
of other CBSPE methods. Therefore, we describe lessons learned during the study.

The contributions of this paper are (i) experimental results about the prediction ac-
curacy achieved by third-party users of a CBSPE method and (ii) a quantitative and
qualitative analysis for the reasons that led to the achieved prediction accuracy. Our
study is the first of its type in this area, as we are not aware of any other studies on a
CBSPE method being applied by third-party users. This may be a result of the novelty
of these methods. The study helps to bring CBSPE closer to industrial maturity and is
an important prerequisite for large scale industrial case studies.

The paper is organised as follows. Section 2 briefly describes the Palladio perfor-
mance prediction method, so that the reader can assess the experimental tasks.
Section 3 explains the goals, questions, hypotheses, and metrics used in this experi-
ment according to the GQM paradigm [3] and describes the experimental design and
conduction. Section 4 first lists the results for the formerly defined metrics collected in
this experiment and afterwards discusses lessons learned. Section 5 includes potential

Investigation of the Applicability of a CBSPE Methods 19

threats to the validity of our study to round up the experimental description. Section 6
lists related work to this study, before Section 7 concludes the paper.

2 Palladio Component Model

The Palladio Component Model (PCM) [5,19] is a meta-model for specifying and ana-
lysing component-based software architectures with focus on performance prediction.

This meta-model is divided among the separate developer roles of a component-
based development process, providing each role with a domain-specific language suited
to capture their specific knowledge [5]. The language of component developers targets
at producing independent, reusable component specifications, that are parametrised by
influence factors whose later values are unknown to the component developer. In par-
ticular, these are (i) the performance measures of external service calls, which depend
on the actual binding of the component’s required interfaces (provided by the software
architect in the assembly model), (ii) the actual resource demands which depend on the
allocation of the components to hardware resources (provided by the system deployer),
and (iii) performance-relevant input/output parameters of service calls (provided by the
domain expert in the usage model).

The parametric behavioural specification used in the PCM as part of the software
model is the Resource Demanding Service Effect Specification (RD-SEFF) which is
a control and data flow abstraction of single component services. It specifies control
flow constructs like loops or branches if they affect external service calls. Additionally,
it abstracts component internal computations in so called internal actions which only
contain the resource demand of the action but not its concrete behaviour. Calling ser-
vices and parameter passing are specified using external call actions, which only refer
to the component’s required interfaces to stay independent of the component binding.

Tool support. The PCM is supported by the PCM-Bench (see [19]), which is based
on the Eclipse platform and provides UML-like graphical editors for PCM instances.
For performance annotations, it uses a textual syntax, providing editors which help
entering the expression with auto-completions, type-checking and syntax highlighting.
OCL is applied to increase completeness and correctness of PCM model instances. A
simulation tool predicts performance measures of the G/G/n queueing system a PCM
instance represents. It uses specialised queueing networks as the performance model
and is generated from a PCM instance using model transformations.

The resulting prediction metrics are response time distributions of single external
service calls as well as for a whole scenario. They are visualised as cumulative distri-
bution functions (CDFs) or histograms. The utilisation of resources is visualised using
pie charts.

3 Empirical Investigation

For the empirical investigation, we formulated a goal, two question and derived met-
rics using the Goal-Question-Metric approach [3] The goal of this work is to empirically

20 A. Martens et al.

evaluate the applicability of the Palladio approach from a third-party user’s point of
view.

The same metrics can also be used when repeating this experiment, also for other ap-
proaches. In this paper, we focus on the results for the achieved accuracy when Palladio
is applied by third-party users. Details of the concerned two questions, their hypotheses,
and their metrics are presented in section 3.1. For comparison, with the same question
and metrics, we also investigated the SPE approach [21], which offers no special sup-
port for component-based systems. For brevity, we keep the presentation of the SPE
results short and focus on the results for Palladio.

We conducted the investigation as a controlled experiment. Section 3.2 presents
the experiment’s design, section 3.3 describes the preparation of the participants, and
section 3.4 presents the systems under study.

3.1 Questions and Metrics

Due to space limitations, only informal explanations of the metrics are given here. The
formal definitions can be found in [16, p.35]. Table 1 summarises questions and metrics.

To study the applicability of Palladio, we first carefully created performance models
of the systems under study ourselves as sample solutions. These sample solutions are
unique for the information provided in the experimental task, as adding any information
or omitting any information from the experimental task would not reflect the system
properly any more. During the experiment, we gave the students enough information to
create performance models for the different design alternatives themselves. Afterwards,
we assessed the participants’ models by comparing their prediction to predictions from
the sample solution. Thus, in the following, quality of the models is defined to be the
similarity to the sample solution. We measured the applicability in terms of how well
the participants understand the approaches and how usable the given tools are, and
therefore we asked the following questions and defined the following metrics.

Q1: What is the quality of the created performance prediction models? First, a
performance model should enable predictions that are similar to the reference perfor-
mance model (i.e. the sample solution) when analysed. Here, the predicted response
time was an important performance metric. Thus, we defined metric 1.1: Relative devi-
ation of predicted mean response times of the participants and of the reference model
(percentage).

To assess different design alternatives when designing or changing a system, the re-
lation of the respective response times is also of interest. We let the participants evaluate

Table 1. Summary GQM Questions and Metrics

Question 1 What is the quality of the created performance prediction models?
Metric 1.1 Relative deviation of predicted mean response times of the participants and of

the reference model.
Metric 1.2 Percentage of correct design decisions.
Metric 1.3 Normalised deviation in design decision rankings.
Question 2 What are the reasons for potentially deviating predictions?
Metric 2.1 Problems when creating the models and classification

Investigation of the Applicability of a CBSPE Methods 21

several design alternatives and measured how many participants correctly identified the
best design alternative in respect of its response time by stating metric 1.2: Percentage
of correct design decisions.

As a software architect does not necessarily choose the design alternative with the
best performance, but might consider other quality attributes or cost, the results for the
performance-wise inferior design alternatives are also important. Thus, next to identify-
ing the best design alternative, the participants had to rank all alternatives. The ranking
of design alternatives by the participants was compared to the ranking of the design
alternatives of the reference solution in metric 1.3: Normalised deviation in design de-
cision rankings. For this metric, we counted how many ranks lie between the position
of a design alternative in the ranking of a participant and the correct position of a this
design alternative in the ranking for the reference solution. We normalised this metric
so that a correct ranking has a deviation of 0% and the reversed ranking a deviation
of 100%. Additionally, we recognised very similar response times as virtually equal
design alternatives and did not punish rankings that permuted them.

Our hypothesis 1 was that (1) the average deviation as measured with metric 1.1 is
not larger than 10%, (2) 80% of the participants can choose the correct design decision
and (3) the rankings deviate no more than 10% in average for both Palladio and SPE.

Q2: What are the reasons for potentially deviating predictions? Several factors
might influence the quality of a prediction. First of all, the participants need to under-
stand the approaches and their various concepts. Additionally, the tools has to be usable
and support an easy creation and maintenance of the models. Problems in both areas
could lead to modelling errors and therefore to erroneous predictions. Next to modelling
problems, errors in interpreting the prediction results might lead to false conclusions.
This depended on the results the approach gave as well as on visualisation of results in
the tool.

To measure the problems, we documented questions of the participants and errors
in the final models, that appeared during the acceptance test or were found in the fi-
nal models. Each such question or error is counted as one problem in metric M2.1:
Problems when creating the models and classification.

Our hypothesis 2 was that most problems arise from a lack of understanding and tool
difficulties.

3.2 Experiment Design

The study was conducted as a controlled experiment. The participants of this study
were students of a master’s level course. In an experiment, it is desirable to trace back
the observations to changes of one or more independent variables. Therefore, all other
variables influencing the results need to be controlled. The independent variable in this
study was the prediction approach (i.e. Palladio or SPE). Observed dependent variables
were the quality of the created models in terms of similarity with a reference model and
the problems occurring during the experiments or being detected in the final models.

The experiment was designed as a cross-over trial [12] as depicted in figure 1. The
participants were divided into two groups, each applying an approach to a given task.
In a second session, the groups applied the other approach to a new task. Thus, each

22 A. Martens et al.

SPE
Media Store
9 students

Palladio
Media Store
10 students

SPE
Web Server
10 students

Palladio
Web Server
8 students

Session 1:
30.06.2007

Session 2:
07.07.2007

P
re

pa
ra

tio
n

E
xp

er
im

en
t

Lectures
10 sessions

Practical lab
8 sessions

10 Preparatory
exercises

Fig. 1. Experiment design

participant worked on two tasks in the course of the experiment (inter-subject design)
and used both approaches. This allowed us to collect more data points and balanced
potential differences in individual factors like skill and motivation between the two
experiment groups. Additionally, using two tasks lowered the concrete task’s influence
and increased the generalisability.

We balanced the grouping of the participants based on the results in the preparatory
exercises: We divided the better half randomly into the two groups, as well as the less
successful half, to ensure that the groups were equally well skilled for the tasks. We
chose not to use a counter-balanced experiment design, as we would have needed to
further divide the groups. In that case, the groups would have been to small and the
individual’s performance would have been too much an influence. We expected a higher
threat to validity from the individual participant’s performance than from sequencing
effects (also called carry-over effects, [12]).

Before handing in, the participants’ solutions were checked for minimum quality
(less than 50% deviation) by comparing the created models to the respective reference
model. This acceptance test included the comparison of the predicted response time
with the reference model’s predicted response time as well as a check for the models’
well-formedness.

3.3 Student Teaching

The 19 computer science students participating in the experiment were trained in apply-
ing Palladio and SPE in a course covering both theory and practical labs. For the theory
part, there was a total of ten lectures, each of them took 1.5h. The first three lectures
were dedicated to foundations of performance prediction and CBSE. Then, two lectures
introduced SPE followed by five lectures on Palladio. The three additional lectures on
Palladio in comparison to SPE were due to its more complex meta-model which al-
lows for reusable prediction models. In parallel to the lectures, eight practical labs took
place, again, each taking 1.5h. During these sessions, solutions to the accompanying
ten exercises were presented and discussed. Five of these exercises practised SPE and
five Palladio.

Investigation of the Applicability of a CBSPE Methods 23

The exercises had to be solved by the participants between the practical labs. We
assigned pairs of students to each exercise and shuffled the pairs frequently to get dif-
ferent combinations of students work together and exchange knowledge. Each exercise
took the students 4.75h in average to complete.

Overall, the preparation phase was intended to ensure a certain level of familiarity
with the tools and concepts, because participants who failed two preparatory exercises
or an intermediate short test were excluded from the experiment.

3.4 Experiment Tasks

To be applicable for both SPE and Palladio, the experiment tasks can only contain
aspects that can be realised with both approaches. For example, the tasks did not make
use of the separate developer roles of Palladio.

Both experiment tasks had similar set-ups. The task descriptions contained com-
ponent and sequence diagrams documenting the static and dynamic architecture of a
component-based system. The sequence diagrams also contained performance annota-
tions. The resource environment with servers and their performance properties was doc-
umented textually. The detailed task description is available on-line in [16]. For each
system, two usage scenarios were given, to reflect both a single-user scenario (UP1) and
a multi-user scenario leading to contention effects (UP2). Additionally, they differed in
other performance relevant parameters (see below).

In addition to the initial system, several design alternatives were evaluated. Four of
them were designed to improve the system’s performance, and the participants were
asked to evaluate which alternative is the most useful one. Three of these alternatives
implied the creation of a new component, one only changed the allocation of the com-
ponents and the resource environment by introducing a second machine. With the final
fifth alternative, the impact of a change of the component container, namely the intro-
duction of a broker for component lookups, on the performance should be evaluated.

The systems in both tasks were prototypical component-based systems. In the first
session, a performance prediction for a web-based system called Media Store was con-
ducted. This system stores music files in a database. Users can either upload or down-
load sets of files. The size of the music files and the number of files to be downloaded
are performance-relevant parameters. The five design alternatives were the introduction
of a cache component that kept popular music files in memory (vMS

1), the usage of a
thread pool for database connections (vMS

2), the allocation of two of the components
to a second machine (vMS

3), the addition of a component that reduces the bit rate of
uploaded files to reduce the file sizes (vMS

4) and the aforementioned usage of a broker
(vMS

5).
In the second session, a prototypical Web Server system was examined. Here, only

one use case was given, a request of an HTML page with further requests of potential
embedded multimedia content. Performance-relevant parameters were the number of
multimedia objects per page, the size of the content and the proportion of static and dy-
namic content. The five design alternatives were the introduction of a cache component
(vWS

1), the aforementioned usage of a broker (vWS
2), the parallelisation of the Web

Server’s logging (vWS
3), the allocation of two of the components on a second machine

(vWS
4) and the usage of a thread pool within the Web Server (vWS

5).

24 A. Martens et al.

The participants who used the Palladio approach were provided with an initial repos-
itory of available components and their interfaces, but not their behavioural description
(i.e., RD-SEFFs, see section 2). It made the tasks for SPE and Palladio more compa-
rable, because the participants still had to create the RD-SEFFs with the performance
annotations, which is similar to the creation of an SPE model.

4 Results

In this section, we interpret the measured data based on the GQM plan. The structure
of this section follows the two questions, each being partitioned into the presentation
of the metrics. In the paper, we only present the evaluation of the metrics for Palladio.
The results for SPE can be found in [16, p.83]. The metrics are evaluated for both tasks.
Finally, the hypothesis of each question is checked based on the measured metrics.

4.1 What is the Quality of the Created Performance Prediction Models?

Metric 1.1: Relative deviation of predicted mean response times between the par-
ticipants and the reference model. Table 2 shows the results of metric 1.1 for Palladio.

We first consider the average deviation for each task. Overall, the deviation is lower
using the Media Store and for UP1. The overall average is low with 6.9%. Interest-
ingly, the deviation varied a lot between the different design alternatives. For the Media
Store and Palladio, the alternative vMS

3 (second server), has a high deviation, and vMS
0

for the UP2, too. For the Web Server and Palladio, the deviations for the vWS
2 , the

broker alternative, vWS
0 , vWS

1 (Cache), and vWS
3 (Logging) are also high.

For SPE, we measured a slightly higher average deviation of 8.3% and also strong
variations for the different design alternatives.

Metric 1.2: Percentage of correct design decisions. For metric 1.2, we compared
the results of the reference model (cf. section 3.1) with the participants rankings and
assessed the percentage of correct identification of the performance-wise best design
alternative. Some participants did not manage to model all alternatives in the given time
and thus, their rankings were incomplete and their results cannot be used (see fig. 1 for
the total numbers of participants).

As the predicted response time of the best and second-best alternatives of the Media
Store were close to each other, we made no distinction between these two. Thus, all
participants chose right, because all of them identified either the bit rate (vMS

4) or the

Table 2. Metric 1.1: Relative deviation of the predicted response times for Palladio

vs
0 vs

1 vs
2 vs

3 vs
4 vs

5 Avg
Media Store UP1 1.93% 0.90% 0.49% 20.08% 3.02% 1.69% 4.69%
(s = MS) UP2 13.21% 2.20% 4.15% 13.23% 4.42% 3.51% 6.79%
Web Server UP1 1.00% 11.07% 1.94% 4.23% 4.55% 9.40% 5.47%
(s = WS) UP2 15.92% 20.35% 10.87% 10.67% 2.57% 3.64% 10.67%
Overall propDevMeanRespPal 6.90%

Investigation of the Applicability of a CBSPE Methods 25

cache option (vMS
1) as the best design alternative and ranked the respective other one

second-best.
For the Web Server, UP1 and Palladio, 4 out of 6 participants who ranked all

alternatives identified the second server vWS
4 as the best alternative. Of the two others,

one actually predicted a lower response time for the cache (vWS
1), the other one seemed

to have other reasons or could not correctly interpret the CDF, as the second server vWS
4

is faster for his model, too. We get percWS,UP1,Pal = 0.67. All eight SPE participants
chose the right alternative: percWS,UP1,SPE = 1.

For usage model 2, all five Palladio participants who ranked all alternatives identified
the second server vWS

4 as the best alternative. For SPE, 7 out of 8 participants who
ranked all alternatives did so: percWS,UP2,SPE = 0.88.

Combined1 we get percSPE = 0.97 and percPal = 0.85.

Metric 1.3: Normalised deviation in design decision rankings. Not all participants
ranked all alternatives, because they did not complete all predictions or missed the time
to complete the ranking, even if they completed the predictions. We still used the in-
complete rankings for the evaluation of the metrics, but were careful to weight complete
rankings stronger (cf. [16, p.86f]).

For Palladio, the ranks were wrong by 6.5% of the maximum possible permutation.
For SPE, the ranks were wrong by 7.3% of the maximum possible permutation. Thus,
SPE rankings were more permuted by factor 0.12 compared to Palladio rankings.

Hypothesis 1. With both approaches, the mean response time predicted by the partici-
pants only deviates in average 6.9% (Palladio) and 8.3% (SPE) from the mean response
time predicted for the reference model. Thus, the deviation of the average is within the
limit of 10%. However, for single alternatives, the deviation was higher (see table 2).
These pose a threat to hypothesis 1.

Most participants also were able to identify the correct design decisions, in particular
85% for Palladio and 97% for SPE, both is within the bounds of 80%. Finally, the
deviation of the ranking is also low (not more than 10% in average).

Overall, the results indicate that hypothesis 1 cannot be rejected for the average case.
However, the high variation of the deviation of the predicted mean response time be-
tween the different design alternatives hampers assessing hypothesis 1. As the alterna-
tives have differing results, it is unclear how the metrics would be evaluated for different
design alternatives.

4.2 What Are the Reasons for Potentially Deviating Predictions?

Metric 2.1: Number of problems and classification. Table 3 shows the problems
in the different areas for Palladio, first the tools, then the method itself. For the PCM
Bench (i.e. the tool), we identified the problem areas of tool usage, of interpreting the
error messages and of bugs of the tool. With Palladio, most problems were with the
usage of the tool, e.g. participants asked how to create component parameters or a usage
model. Interestingly, there were more usage problems with the Web Server task than

1 Note that the percentages for the two systems do not equally influence the results, but are
weighted by the number of decisions by definition of the metric (cf. [16, p.41])

26 A. Martens et al.

Table 3. Metric 2.1: Average number of problems per participant for Palladio

Tool Methodology

U
sa

ge

E
rr

or

B
ug

S
um

Pa
ra

m
et

er
s

C
om

po
ne

nt
pa

ra
m

et
er

s

Ty
pe

s
an

d
un

it
s

A
ss

em
bl

y

U
sa

ge
m

od
el

S
um

S
um

Media Store 0.57 0.43 0.29 1.29 1.57 1.00 0.71 0.00 0.00 3.29 4.57
Web Server 2.25 0.38 0.63 3.25 0.63 0.38 0.63 0.13 0.13 1.88 5.13
Both systems 1.41 0.40 0.46 2.27 1.10 0.69 0.67 0.06 0.06 2.58 4.85

with the Media Store task. Relatively more tool problems occurred with Palladio (in
average 2.27 per participant, that is 47% of the problems) than with SPE (in average
0.24 per participant, that is 5% of the problems). Although the number of participants
was relatively small, and outliers might strongly have influenced this result, we still give
the average values here. No clear outliers were detected, every participant was included
in both groups (because of the cross-over plan) and the effect was fairly large, thus, the
average values were still meaningful.

For the Palladio method (i.e., separated from the tool), different problem areas were
identified: (1) The specification of parameter values (e.g. specifying the number of re-
quested audio files), especially (2) the specification of component parameters (e.g. spec-
ifying the size of audio files stored in the database), (3) the handling of data types (e.g.
using string and enum values within the model) and annotation units (e.g. confusing
seconds with millisecond within one model), (4) the assembly (wiring the components)
and (5) the usage model (specifying the user flow). Here, in average most problems con-
cerned the specification of parameter values, followed by the specification of compo-
nent parameters and of types and units. Interestingly, this relation is very pronounced for
the Media Store, but less pronounced for the Web Server, where there were equally
many problems with parameters and types and units, followed by component parame-
ters. The participants using Palladio for the Web Server task had more problems with
the tool than with the methodology, the opposite applies to the participants using Palla-
dio for the Media Store task. Overall, participants using Palladio had 2.58 methodol-
ogy problems per participant in average (that is 53% of the problems). In comparison,
participants using SPE had 4.21 methodology problems per participant in average (that
is 95% of the problems). Thus, compared to SPE, participants using Palladio had more
problems with the actual tool implementation and less with the methodology itself.

For Palladio, 77% of the problems occurred during the experiment and were captured
in the question protocol, 12% in the acceptance test, and 11% were still present in
the final models. For SPE, 30% were captured in the question protocol, 26% in the
acceptance test, and 44% of the problems were still present in the final model.

Investigation of the Applicability of a CBSPE Methods 27

Hypothesis 2. Our hypothesis 2 was that most problems arise from a lack of under-
standing and tool difficulties. The number of problems detected, being in average more
than 4 per participant for both approaches, show that there was a significant number of
problems. Still, as the quality of the created models was overall satisfactory, they do not
invalidate the principle applicability of the approaches.

As expected, problems arose from a lack of understanding of the methodology and
tool difficulties. Additionally, problems with the task description were detected (not
included in the table 3 above).

4.3 Lessons Learned

Applicability: The participant in this study were able to create models with a good
quality (as defined in section 3.1): Their predictions had a low deviation compared
to a reference model, they were mostly able to choose the best design alternative
and they successfully ranked the design alternatives based on the predicted per-
formance. The results are comparable to the quality of models created with SPE.
As SPE is a mature approach also applied in industry, the results suggest that also
Palladio can be applied by third-party users.

Tool influence: A large fraction of the problems detected for Palladio concerned the
tool, i.e. the current implementation of the approach. This supports our conviction
that the tool is an important part of any study of applicability of approaches, and
must be taken into account when designing and executing them.

Methodology: The results also show that there were fewer methodology problems for
the component-based approach Palladio than for the mature SPE, even though the
meta model is much more complex: While the SPE meta model consists of 28
classes, the Palladio meta model has about 100 classes, of which most are needed in
every model. The results show that the complexity of the meta model can be hidden
in the tool and does not hinder the applicability. In the qualitative questionnaire,
most participants even stated to have understood the Palladio concepts better than
SPE constructs [16].

Occurrence of problems: Problems occurred early during the experiment for Palla-
dio, whereas for SPE, more problems remained in the final models as errors. This
suggests that a tool support with many constraint checks against the meta model
helps the user to identify problems. Thus, checks contribute to fewer errors in the
final models.

Interpretation of results: We saw that distribution functions as resulting metrics are
comprehensible for the users, although they were harder to interpret than the mean
value and resulted in more errors. More teaching effort is required to make users
familiar with the analysis results, and more effort should be spent to improve the
presentation of the prediction results.

Influence of the system under study: Finally, the study detected an influence of the
system under study on the applicability. Both the quality of the created models, the
number of problems and the needed effort (cf. [17]) depend on the actual design
decision under study. In this study, the Web Server system seems to be in general
more fitted for Palladio, whereas the Media Store system seems to be more fitted

28 A. Martens et al.

for SPE. This is also supported by qualitative results, because only some partici-
pants from the (Palladio, Media Store) group and the (SPE, Web Server) group
stated that the task at hand was too difficult. All participants from the other two
groups stated the task difficulty was adequate.

5 Threats to Validity

To enable the reader to assess our study, we list some potential threats to its validity in
the following. We look at the internal, construct, and external validity (a more thorough
discussion can be found in [16]).

The internal validity states whether changes of an experiment independent variables
are in fact the cause for changes of the dependent variables [22, p.68]. Controlling po-
tential interfering variables ensures a high internal validity. In our experiment, we eval-
uated the pre-experiment exercises and assigned the students to equally capable groups
based on the results to control the different capabilities of the participants. A learning
effect might be an interfering variable in our experiment, as the students finished the
second experiment session faster than the first one.

A potential bias towards or against Palladio was threatening the internal validity
in our experiment, as the participants knew that the experimenters were involved in
creating this method. However, we did not notice a strong bias from the collected data
and the filled-out questionnaires, as the participants complained equally often about the
tools of both approaches.

The construct validity states whether the persons and settings used in an experiment
represent the analysed constructs well [22, p.71]. Palladio and SPE are both typical per-
formance prediction methods involving UML-like design models. The SPE approach
has no special support for component-based systems, and was chosen for the exper-
iment due to its higher maturity compared to existing CBSPE approaches. Addition-
ally, SPE only supports M/M/n queueing systems and reports only mean values. We
designed the experimental tasks so that not all specific features of Palladio (e.g. sepa-
ration of developer roles in component-based development, performance requirements
using quantiles) were used to ensure a balanced comparison.

While our experiment involved student without long-time industrial experience, we
argue that their performance after the training sessions was comparable to the potential
performance of practitioners. Most of the students were close to graduating and will
become practitioners soon. Due to the training, their knowledge about the methods was
more homogeneous than the knowledge of practitioners with different backgrounds.
Studies, such as [11], suggest the suitability of students for similar experiments.

The external validity states whether the results of an experiment are transferable to
other settings than the specific experimental setting [22, p.72]. While we used medium-
sized, self-designed systems for the tasks, we modelled these system designs and the
design alternatives after typical distributed systems and commonly known performance
patterns [21], which are representative for the systems usually analysed in this area.

We tried to increase the external validity of our study by letting the participants
analyse two different systems, so that differences in the results could be traced back to

Investigation of the Applicability of a CBSPE Methods 29

the systems, and not the prediction methods. Effects that are observed for both tasks are
thus more likely to be generalisable to other settings.

Still, the systems under study were modelled on a high abstraction level due to the
time constraints of such an experiment. More complex systems would increase the ex-
ternal validity, but would also involve more interfering variables, thus decreasing the
internal validity. Furthermore, the available information at early development stages is
usually limited, which would be reflected by our experimental setting.

6 Related Work

Basics about the area of performance prediction can be found in [18,21]. Balsamo et
al. [1] give an overview of about 20 recent approaches based on queueing networks,
stochastic Petri nets, and stochastic process algebra. Becker et al. [4] survey perfor-
mance prediction methods specifically targeting component-based systems. Examples
are CB-SPE [6], ROBOCOP [7], and CBML [23].

Empirical studies and controlled experiments [22] are still under-represented in the
field of model-based performance predictions, as hardly any studies comparable to ours
can be found. Balsamo et al. [2] compared two complementary prediction methods
(one based on SPA, one on simulation) by analysing the performance of a naval com-
munication system. However, in that study, the authors of the methods carried out the
predictions themselves. Gorton et al. [9] compared predicted performance metrics to
measurements in a study, but only used one method for the predictions.

Koziolek et al. [14] conducted a study similar to the one presented in this paper. They
compared three different performance prediction methods, which were not specific for
component-based systems. The study also involved the SPE methods and attested it
the most maturity and suitability for early performance predictions and influenced our
decision to compare Palladio to SPE.

7 Conclusions

We have conducted a controlled experiment with 19 computer science students inves-
tigating the applicability of a CBSPE method (our Palladio method) by third parties.
After several training sessions, the students modelled and analysed the performance of
two different component-based designs and assessed five different design alternatives
for each system. We found that the quality of the models and predictions created by
the students deviated less than 10 % from the predictions achieved with a reference
model created by the experimentators. Furthermore, we learned that more than 80% of
students were able to rank the given design alternatives correctly. Reasons for the still
existing deviations in the predictions were traced back to problems with the involved
tools (47%) and to problems with the methodology (53%).

To the best of our knowledge, our experiment is the first empirical study involving
a CBSPE method applied by persons other than their authors. Researchers and prac-
titioners can benefit from this type of study. Researchers can use the lessons learned
during our experiment to improve their own CBSPE methods, as these lessons are not
specific for the Palladio method. For practitioners, the training material and improved

30 A. Martens et al.

tool support created for this experiment may lower the barrier to learn a CBSPE method
and conduct early performance predictions to create better software architectures.

However, our study is still a first step to rigorously assess the applicability of CB-
SPE methods. Similar experiments should be conducted once the tools and methodolo-
gies mature further. Future experiments should also compare different CBSPE methods
against each other to evaluate their specific benefits and deficits. It would be interest-
ing to compare the predictions to measurements of different implementations of the
designs, to analyse larger designs, and to also involve practitioners in the study.

Details on the experimental settings and the results can be found in [16], available
online at http://sdq.ipd.uka.de/diploma theses study theses/completed theses

Acknowledgements. We would like to thank Walter Tichy, Lutz Prechelt, and Wilhelm
Hasselbring for their kind review of the experimental design and fruitful comments.
Furthermore, we thank all members of the SDQ Chair for helping prepare and conduct
the experiment. Last, but not least, we thank all students who volunteered to participate
in our experiment.

References

1. Balsamo, S., Di Marco, A., Inverardi, P., Simeoni, M.: Model-Based Performance Prediction
in Software Development: A Survey. IEEE Trans. on Softw. Eng. 30(5), 295–310 (2004)

2. Balsamo, S., Marzolla, M., Di Marco, A., Inverardi, P.: Experimenting different software
architectures performance techniques: A case study. In: Proc. of WOSP, pp. 115–119. ACM
Press, New York (2004)

3. Basili, V.R., Caldiera, G., Rombach, H.D.: The Goal Question Metric Approach. In:
Marciniak, J.J. (ed.) Encyclopedia of Software Engineering - 2 Volume Set, pp. 528–532.
John Wiley & Sons, Chichester (1994)

4. Becker, S., Grunske, L., Mirandola, R., Overhage, S.: Performance Prediction of Component-
Based Systems: A Survey from an Engineering Perspective. In: Reussner, R., Stafford,
J.A., Szyperski, C.A. (eds.) Architecting Systems with Trustworthy Components. LNCS,
vol. 3938, pp. 169–192. Springer, Heidelberg (2006)

5. Becker, S., Koziolek, H., Reussner, R.: Model-based Performance Prediction with the Pal-
ladio Component Model. In: Proc. of WOSP, February5–8, 2007, pp. 54–65. ACM Sigsoft,
New York (2007)

6. Bertolino, A., Mirandola, R.: CB-SPE Tool: Putting Component-Based Performance En-
gineering into Practice. In: Crnković, I., Stafford, J.A., Schmidt, H.W., Wallnau, K. (eds.)
CBSE 2004. LNCS, vol. 3054, pp. 233–248. Springer, Heidelberg (2004)

7. Bondarev, E., Chaudron, M.R.V., de Kock, E.A.: Exploring performance trade-offs of a JPEG
decoder using the DeepCompass framework. In: Proc. of WOSP 2007, pp. 153–163. ACM
Press, New York (2007)

8. Eskenazi, E., Fioukov, A., Hammer, D.: Performance Prediction for Component Composi-
tions. In: Crnković, I., Stafford, J.A., Schmidt, H.W., Wallnau, K. (eds.) CBSE 2004. LNCS,
vol. 3054, pp. 280–293. Springer, Heidelberg (2004)

9. Gorton, I., Liu, A.: Performance Evaluation of Alternative Component Architectures for En-
terprise JavaBean Applications. IEEE Internet Computing 7(3), 18–23 (2003)

http://sdq.ipd.uka.de/diploma_theses_study_theses/completed_theses

Investigation of the Applicability of a CBSPE Methods 31

10. Hamlet, D., Mason, D., Woit, D.: Component-Based Software Development: Case Studies,
March 2004. Series on Component-Based Software Development, chapter Properties of Soft-
ware Systems Synthesized from Components, vol. 1, pp. 129–159. World Scientific, Singa-
pore (2004)

11. Höst, M., Regnell, B., Wohlin, C.: Using students as subjects - A comparative study of
students and professionals in lead-time impact assessment. Empirical Software Engineer-
ing 5(3), 201–214 (2000)

12. Jones, B., Kenward, M.G.: Design and Analysis of Cross-over Trials, 2nd edn. CRC Press,
Boca Raton (2003)

13. Kounev, S.: Performance Modeling and Evaluation of Distributed Component-Based Sys-
tems Using Queueing Petri Nets. IEEE Trans. of SE 32(7), 486–502 (2006)

14. Koziolek, H., Firus, V.: Empirical Evaluation of Model-based Performance Predictions Meth-
ods in Software Development. In: Reussner, R., Mayer, J., Stafford, J.A., Overhage, S.,
Becker, S., Schroeder, P.J. (eds.) QoSA 2005. LNCS, vol. 3712, pp. 188–202. Springer, Hei-
delberg (2005)

15. Liu, Y., Fekete, A., Gorton, I.: Design-Level Performance Prediction of Component-Based
Applications. IEEE Transactions on Software Engineering 31(11), 928–941 (2005)

16. Martens, A.: Empirical Validation of the Model-driven Performance Prediction Approach
Palladio. Master’s thesis, Universität Oldenburg (November 2007),
http://sdq.ipd.uka.de/diploma theses study theses/
completed theses

17. Martens, A., Becker, S., Koziolek, H., Reussner, R.: An empirical investigation of the effort
of creating reusable models for performance prediction. In: CBSE 2008, Karlsruhe, Germany
(accepted, 2008)

18. Menasce, D., Almeida, V., Dowdy, L.: Performance by Design. Prentice Hall, Englewood
Cliffs (2004)

19. The Palladio Component Model, http://palladio-approach.net
20. Sitaraman, M., Kuczycki, G., Krone, J., Ogden, W.F., Reddy, A.L.N.: Performance Specifica-

tion of Software Components. In: Proceedings of the 2001 symposium on Software reusabil-
ity: putting software reuse in context, pp. 3–10. ACM Press, New York (2001)

21. Smith, C.U., Williams, L.G.: Performance Solutions: A Practical Guide to Creating Respon-
sive, Scalable Software. Addison-Wesley, Reading (2002)

22. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experimentation
in Software Engineering: an Introduction. Kluwer Academic Publishers, Norwell (2000)

23. Wu, X., Woodside, M.: Performance Modeling from Software Components. SIGSOFT SE
Notes 29(1), 290–301 (2004)

http://sdq.ipd.uka.de/diploma_theses_study_theses/completed_theses
http://sdq.ipd.uka.de/diploma_theses_study_theses/completed_theses
http://palladio-approach.net

N. Thomas and C. Juiz (Eds.): EPEW 2008, LNCS 5261, pp. 32 – 47, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Calibration Framework for Capturing and Calibrating
Software Performance Models

Xiuping Wu and Murray Woodside

Dept. of Systems & Computer Eng., Carleton University
Ottawa, ON, Canada, K1S 5B6

{xpwu,cmw}@sce.carleton.ca

Abstract. Software performance engineering could benefit from combining
modeling and testing techniques, if performance models could be derived more
cheaply and more easily. This work investigates how known testing and estima-
tion methodologies can be combined in a calibration framework, to provide and
maintain performance models in sync with a developing product or component
library. There are two main aspects. The first addresses a major barrier in prac-
tice, the calibration of model parameters that represent quantities that cannot
easily be measured directly. This work calibrates these “hidden parameters” ef-
ficiently using a Kalman Filter. The second is the exploitation of the filter esti-
mator to control the calibration framework, for example to terminate a test
when accuracy is sufficient, and to design tests for parameter coverage. The
technique is demonstrated on simulated data and on an implemented Voice-
over-IP (VoIP) system.

Keywords: Performance modeling, Performance testing, Parameter estimation,
Software performance engineering.

1 Introduction

A recent overview of software performance engineering [25] pointed out that

• the field badly needs more effective methods, that can be applied more quickly
and with less effort,

• methods based on models and measurements have been developing separately,
and could both benefit from being more strongly connected.

A combination of models with measurements can strengthen both. Measurements
evaluate a product, while models can extrapolate beyond the test environment and the
existing state of the system, e.g. for scalability analysis. This paper creates a bridge
between performance testing and modeling, in the form of a model calibration
framework. It uses tests to calibrate a model, and uses the model to define and manage
the tests, in a kind of bootstrap process. We consider:

• the test environment drivers and stubs, instrumentation, and workload
• what tests should be run (how many, how long, under what conditions?) This

involves a form of coverage of the parameters,

 A Calibration Framework for Software Performance Models 33

• what variables should be measured, and how long should each test be run?
• what is the accuracy of the calibrated parameters and the model predictions?
• can the model structure be determined (as well as its parameters)?

The uses of the model include predictions across deployments, scalability limits, and
diagnosis of performance loss (e.g. [22]). Component software offers special opportu-
nities recognized in the PACC (predictable assembly of certified components) initia-
tive (e.g., [12]). Submodels of components are calibrated and composed into product
models in several works, e.g. [5] [6] [16] [28].

Representative examples of the extensive prior work on measurement are [17] on
capture and interpretation of data, and [2] on testing a system against requirements.
Barber [4] considers workloads for testing. Tests may also be applied to components
(e.g. [8]). A performance model helped to interpret test results in [1].

Model calibration by tests was described by Liu and Gorton [16], using a synthetic
benchmark. A performance model was created by combining this with a behavior
description of the application. In the APPEAR method [9] a simulation model and a
statistical model are combined to predict performance. Muskens described a composi-
tional prediction method [19] with two parts, service composition and behavior com-
position. Given a scenario, the method composes the required services, and computes
its CPU cost. However, it does not calibrate the CPU demands.

An extended Kalman filter, similar to the estimator used below, was applied suc-
cessfully in [26] to track the parameters of a time-varying system. It was shown that
the filter parameters (which depend on the changing environment) do not have to be
precisely known, but do affect the accuracy of tracking. The evaluation of the filter
performance is however different in the present case, in which the parameters are not
changing. It is also possible to use non-sequential least squares estimation [15], but
the sequential filter has some advantages for our purposes.

The present paper defines the concept of a model calibration environment, and
methodology for using it (including compensation for drivers and stubs that exploits
the performance model, and a concept of model parameter coverage, based on estima-
tion accuracy). Two sets of experiments are described which demonstrate the Kalman
filter estimator in action, and show that it is effective with several parameters (e.g.,
four).

2 A Calibration Environment for Software Performance Models

The calibration environment has the following features:

1) The workload to be applied to a system or component is described by a usage
profile, analogous to a “user operational profile” [18] but adapted to performance
and to software which is not necessarily driven by the user directly. The usage pro-
file defines a mixture of request types into the system, and their parameters.

2) Test configurations include the system under test, drivers to apply requests, stubs
to provide essential additional functionality, and instrumentation.

3) Instrumentation concentrates on delays and throughputs of requests measured at
accessible interfaces, and device utilizations.

34 X. Wu and M. Woodside

4) Estimation: the estimator adjusts the model parameters to match the model predic-
tions to the measured values. The accuracy of the fitted parameters and of the
model predictions is also estimated by confidence intervals.

5) Parameter coverage: a parameter is covered by a set of tests if it is estimated with
adequate accuracy. The estimator can analyze coverage.

6) Stopping: A sequential estimator is used, which can be stopped when sufficient
accuracy is obtained, to avoid excessive measurement effort.

Figure 1 illustrates the calibration methodology including the entities (model, usage
profile, test plan, etc.) and some of the flows in the process of testing. The parts of the
process which are stressed here are outlined in bold in Fig. 1.

New or updated
system/component

Parameter
estimates

Test
configuration

Necessary
components,

drivers and stubs

Test plan

Usage profile software

Model

Prior knowledge of
model structure
and parameters

Assess adequacy

Calibration test
environment and
instrumentation

Estimator update

initialize

revise

revise

Fig. 1. The process

2.1 Software Performance Models and Layered Queueing

As surveyed by Balsamo et al. [3], the performance model may be a queueing net-
work (QN), a timed Petri net, or an extended QN. This work applies to any kind of
performance model, and abstracts it as a vector function h:

y = h(x, u)
y = a vector of m performance measures predicted by the model
x = a vector of n parameters which are to be estimated
u = a vector of parameters which are known, called here configuration parameters.

This work considers only analytic models, in order to compute the sensitivity of the
performance to the parameters using numerical differentiation. The sensitivity is a
matrix H:

 H = ∂h/∂x, hij = ∂hi/∂xj ≈ [hi (x+∆xj1j; u) – hi (x; u)]/ ∆xj (1)

in which ∆xj is a small increment in xj and 1j is a unit vector in the jth direction. Small
elements in H indicate low sensitivity of the measurements to a parameter, and for

 A Calibration Framework for Software Performance Models 35

calibration purposes some measurement must have adequate sensitivity to each
parameter.

Examples below use a form of extended QN called a Layered Queueing Network
(LQN) [10] [11] in which servers represent processors, software entities and their
resources. An LQN resembles a software architecture, as in Figure 2 for a small three-
tier web application. Servers are tasks (the bold rectangles) or processors (the ovals),
with multiplicity shown in curly brackets, e.g. {100}. Tasks provide services called
entries (the light rectangles attached to the tasks), which make CPU demands (num-
bers in brackets, e.g. [3 ms]) and make requests to other entries (the arrows, labeled
by frequency parameters, e.g. (0.4) for the average requests from QueryPage to Com-
putePg. The Users also have a pure delay called a think time that the user spends
between making requests (e.g. {Z=1000 ms}).

requestPage
[3 ms] {Z=1000 ms}

WebServer
{20}

AppServer
{5}

User
{100}

QueryPage
[2 ms]

ComputePg
[5 ms]

UserP

ServP(0.4)

(1)

Fig. 2. An LQN model of a Web Application System, showing the notation

Requests may be synchronous (a blocking call-return pattern) indicated by a solid
arrowhead, as in Fig. 2, or asynchronous (open arrowhead), or forwarding (dotted
arrow, signifying that the responsibility of replying is forwarded with the request).

Tasks and processors have queues and may be “multiple” resources (multithreaded
task, multiprocessor). Entries define classes of service at a task, with a service time
that includes both the CPU delay, and blocking delays for service from other entries.

3 Calibration Tests

The measurements for calibrating a model to predict mean values are averaged over
a sampling period, which we will call a step, of length S sec.

A basic requirement is that at least one measurement variable (as represented in the
model) should be sensitive to each parameter to be estimated (should have a non-zero
entry in the H matrix). This is typically satisfied by mean response times at the inter-
face of operations whose host demands are to be estimated, processor utilizations, and
mean request counts (throughputs) for operations.

Tests and Configurations. The test deployment is usually simpler than a full deploy-
ment. The drivers simulate the source of requests, and apply requests corresponding to

36 X. Wu and M. Woodside

the usage profile. The stubs provide key functionality which is essential to obtain mean-
ingful performance. Stubs may have to be more elaborate than in functional testing, in
order to provide accurate performance in the system under test.

Efficient tests require substantial sensitivity of some measurements to each pa-
rameter, in some test step. It may help to apply test steps with different system
configurations. The configuration parameters are the elements of the model vector u.
They may include:

• workload intensity, either as the number of emulated users and their think time, or
as the arrival rate of requests

• other variations within the scope of the usage profile, e.g. selection of operations
• deployment parameters like the size of storage or thread pools.
• hardware parameters like processor, storage or network multiplicities and speeds.

By putting different stresses on the system, configurations provide different sensi-
tivites to parameters, e.g heavy loads stress bottlenecks. Thus the sensitivity require-
ments for parameters can be met in different steps.

Parameter Coverage. For calibration, coverage describes the ability to estimate all
the desired parameters. A trivial measure defines parameter xj as covered, if Hij≠0 for
some measurement (that is, the measurements have non-zero sensitivity to the pa-
rameter). A stronger measure relates to accuracy of estimation, which informally
depends on the magnitude of elements of H. For a given parameter xj the magnitude
of sensitivity can be defined as the largest derivative in H over all measurements and
steps, normalized as follows:

 sensi = maxjk [(xj/hi(x, uk)) |∂hi(x, uk)/∂xj |] (2)

An ad hoc measure of coverage magnitude for a set of tests is the smallest sensi:

 converage magnitude = mini maxjk [(xj/hi(x, uk)) |(Hk)ij|] (3)

Test Plan. A test plan describes a series of steps, numbered k = 1 ... K, each with a
deployment, request patterns, a configuration specified by uk and a nominal duration
Sk. The request patterns are selected from the usage profile. The same step definition
can be repeated multiple times, at some shorter duration for each instance, if desired.

Compensation for Effect of Drivers and Stubs. The loading of resources by drivers
and stubs can be compensated by modeling them explicitly, either as precalibrated
submodels, or as model elements calibrated during the test. In either case their contri-
bution to measured performance is separated from that of the subsystem under test.

4 Test Interpretation: Model Estimation

An initial performance model structure must be created with preliminary estimates of
its parameters. The initial model can be found from a previous version of the system,
from expert knowledge as suggested by Smith and Williams [22] or by analysing the
software specifications. From UML specifications annotated with the performance
profile [20] a performance model can be created using techniques surveyed in [24].
The model structure can also be derived by analyzing traces from running software,
(see e.g. [13]).

 A Calibration Framework for Software Performance Models 37

The estimator requires an initial model that includes this parameter information:

• x
0
 , the initial parameter vector and

• p0 , a vector of variances of x
0
 representing its uncertainty. We can choose:

o (p0)i = (x0)i
2, showing uncertainty of same order as x (recommended).

o if uncertainty is stated as a range x0±∆, and we interpret ±∆i as a confidence
interval for about 95% confidence, (p0)i = (∆i/2)2

o after a small change in the product, (p0)i = the previous variance estimate.

4.1 Maximum-Likelihood Estimation

The likelihood of a set of measured vectors zk (normally distributed with covariance
R), over a sequence of steps with configuration vectors uk, k = 1..K, is maximized by
the vector x̂ which minimizes the quadratic deviation measure E [27]:

 x̂ = arg min E(x), E(x) = Σk (yk − zk)
TR-1(yk − zk), yk = h(xk; uk) (4)

The well-known Gauss-Newton iterative solution for nonlinear regression 0 solves a
sequence of multivariate linear regressions, from some nominal starting parameter x.
Each iteration gives an optimal increment ∆x:

∆x = (Σk Hk
TR-1Hk)-1 ΣkHk

TR-1ek, ek = (yk − zk) (5)

At convergence the covariance matrix of the solution is

 P = (mse) (Σk Hk
TR-1Hk)-1, mse = (Σk ek

TR-1ek)/(mK − n) (6)

where (mK-n) is the degrees of freedom = (data values) − (fitted parameters).
Assuming normality of z and approximate linearity of h(x, u), the posterior distri-

bution of x is normal with covariance matrix P. Then the confidence interval at level
α for the ith parameter (which has sample variance sqrt(Pii)) is

ix̂ t(1- /2; mK-n) (sqrt(Pii))
 (7)

where t is the t-statistic with (mK-n) degrees of freedom. By the linearization of h, the
deviation ∆y due to a deviation ∆x in x, is given by ∆y = H∆x, so y is also

approximately normal with mean ŷ = h(x̂ ,u) and covariance matrix C:

C = Cov(y) = H(x̂ , u) P HT(x̂ ,u)

 (8)

4.2 Sequential Estimation and the Extended Kalman Filter (EKF)

Sequential estimation gives a new estimate at each timestep, and can be used to de-
cide when to stop a test. One such estimator, the Kalman Filter (see, e.g. [14]) was
originally proposed to track a time-varying state vector in a dynamic system. Its ex-
tension for nonlinear systems was applied in [26] to tracking time-varying parameters.
Its use for calibration is somewhat different because parameters are constant and we
are concerned about the transient accuracy of estimation.

38 X. Wu and M. Woodside

The EKF used here considers a vector xk at discrete time instants numbered by k
which drifts according to a random process:

 1kw1kxkx −+−= (9)

where 1−kw is a random increment of covariance Q (we assume negligible drift, so

Q = 0 or is very small).
The performance measurement vector zk at time step k is modeled by:

kv)ku,kh(xkz += (10)

where)u,h(x kk
 is the model prediction and kv is the random measurement error. kv

is assumed to have mean zero and a normal distributions with covariance matrix Rk
assumed to be diagonal and constant over different steps.

The filter is initialized with the values of R and Q (we used a very small diagonal
matrix for Q), and with x0 and P0 = diag(p0). Its operation proceeds as follows:

EKF1: Project the process state ahead:
1kk xx −

− = ˆˆ (11)

EKF2: Project the estimate error covariance ahead. P
-
k-1 represents the covariance

matrix of the estimates 1ˆ −
−

kx : Q1kPkP +−=− (12)

• EKF3: Compute the Kalman Gain K: 1)(−+−−= RHPHHPK T
kkk

T
kkk (13)

• EKF4: Update the estimate of the process state based on the measurement zk and

the prediction error ek:)u,xh(ze k1kkk −−= ˆ (14)

 kekKkxkx +−= ˆˆ (15)

• EKF5: Update the estimate error covariance: −−= k)PkHkK(IkP (16)

Equations (11) – (16) are applied at each time-step, with the H matrix defined in
Eq. (1). They give the feedback structure shown in Fig. 3.

System under Study

Performance Model with
Hidden Parameter

Kalman Filter

Workload (arrivals,
number of users,

think time)
Measurement data

(throughput, utilization,
Service time)

Model prediction
(throughput, utilization,

Service time)

Estimated New Model Parameter

Error (Measured-Predicted)

Make
Error ~ 0

Fig. 3. The Feedback Loop in a Kalman Filter [14]

 A Calibration Framework for Software Performance Models 39

For the estimator to converge, an identifiability condition must be satisfied. In the
present application rank it is (Hk) ≥n. This implies there must be at least as manyinde-
pendent measured quantities as there are estimated parameters (m > n), and makes the
coverage magnitude defined in Eq. (3) greater than zero.

5 A Voice-over-IP (VoIP) System

A simple but realistic demonstration of estimation was carried out on a lab deploy-
ment of a VoIP system based on the open-source VOCAL (Vovida Open Communi-
cation Application Library [7]). The rate of opening new connections and the
connection delay are key performance measures. Connection operations were studied,
using SIP “request” messages INVITE, REGISTER and BYE messages and “re-
sponse” messages TRYING and OK. Tests used the call setup scenario in Fig. 4, and
a call teardown scenario.

The system elements entering into the setup scenario are user agents for the caller
and callee, marshal servers (MS) at both ends, a process redirect server RS which
incorporates SIP standard redirect, location and registration services, and a Call Dura-
tion Recording server CDR for billing purposes. The Ingress Marshal Server includes
user authentication and management of routing the call to the Egress MS, which
routes to the callee. More details can be found in [21].

caller Ingress M S Egress
M S

RS C D R
Server

callee

IN V ITE
Trying IN V ITE

M oved

AC K
IN V ITE
Trying

M oved

IN V ITE

ACK
IN V ITE
Trying
R inging

R inging
R inging C heck availability of C D R

A vailable 200
200

200
ACK ACK AC

C all
talking

Response
time

Fig. 4. Message flow in a Call Setup

40 X. Wu and M. Woodside

The marshal server and redirect server are implemented in VOCAL in one process
we shall call VocalServer, and this is what will be modeled. The process structure is
reflected in the initial model in Fig. 5. VocalServer does marshaling, location discov-
ery, provides routing, and may record billing. After the routing is set up, the call is
forwarded to the Callee. The reply to the Caller indicates a successful set up.

The subsystem under test is the VocalServer process, with one parameter to be es-
timated, the CPU demand per call s2. The VOCAL load test driver is the Caller task
(multiple tasks), and the VOCAL user agent provided the Callee stub process (one
process for each Caller, to simplify delay logging). The execution demands s1 and s3
were calibrated in advance, however the assigned think time is not provided accu-
rately by the driver, so the actual average think time Z of Caller was estimated along
with s2. The application was deployed on a Linux network with one processor for
multiple Callers, one for VocalServer, and one with a Callee for each Caller. The
Callers were configured to make a total of 5000 calls per measurement/estimation
step.

5.1 Experiments

The measured variables for each step were:

• the average response time as indicated on Fig. 5,
• the average total delay for a call,
• the total running time for 5000 calls, used to compute the average throughput.
The system throughput (f) was computed as:

 f = (total calls = 5000) / (total running time).
Applying Little’s law the effective user think time (Z) is:

Z = Callers / f - (response time of a call)
where Callers is the number of Caller processes.

When the load generator was configured to make 15 calls per second, with five
Callers, the measured rate was only about 7/sec.
The estimator has the following parameters to set up.

• x0 = 8.0 milliseconds, chosen arbitrarily (its impact was examined),
• P0 = 64.0, the square of x0 (as described above),
 R = diag(0.000003697, 11.5976094), the variances of throughput and response

time, estimated from repeated measurements.
• Q = 0 or a very small scalar for the drift of s2 (its impact will be examined)

The estimated service demand of Vocal Server over the 12 steps with the data in
Table 1 is shown in Fig. 6. The results showed that the Estimator quickly converged
starting at the second step. Note that step 0 shows the initial guessed value of CPU
demand of the Vocal Server.

The estimator converged in two steps. To test if the initial value of s1 affects the re-
sults, it was set to = 2.0 ms. The results were indistinguishable from Fig. 6.

Experimenting with different Q values shows that Q must be zero or very small,
for the best result. This is entirely reasonable when the parameters are in fact not

 A Calibration Framework for Software Performance Models 41

 Caller makeCall
[s1] [think = Z]

VocalServer processCall
[s2]

Callee acceptCall
[s3]

CallerP

 ServerP

 CalleeP

1

1

Fig. 5. The Initial LQN Model for Call Setup in VOCAL

Table 1. Measurement Data for VOCAL

 Step Throughput
(calls/ms)

Response
time (ms)

Think time
(ms)

0 0.0357 92.8 47.1
1 0.0393 90.8 40.3
2 0.0380 88.0 44.3
3 0.0354 97.9 45.2
4 0.0390 88.3 42.3
5 0.0420 84.8 40.0
6 0.0373 91.7 44.0
7 0.0353 94.9 46.8
8 0.0365 94.7 44.5
9 0.0371 91.1 44.7

10 0.0365 94.2 45.0
11 0.0396 87.2 42.6

changing, but it contrasts with results found when tracking parameters which vary, in
which case a too-large value of Q had little penalty [29].

5.2 Model Validation

The model was used to predict the performance of two different configurations:
1) the load generator was configured to have a lower call rate, and thus a longer

think time (about 267 milliseconds). There are still 5 concurrent load generators
each making 1000 calls for each measurement step. The measurement data was
collected and averaged over 24 steps. The average measured system throughput
was 0.0144 calls per millisecond, compared to the predicted throughput of
0.01618 calls per millisecond. The relative error is about 12%.

42 X. Wu and M. Woodside

Estimated CPU Demand of Vocal Server(ms) (Q=0.00001, Initial X=8.0)

0
2
4
6
8

10
12
14
16
18

0 1 2 3 4 5 6 7 8 9 10 11 12

Step

 C
P
U

 d
em

an
d

Estimated CPU demand of Vocal Server (ms)

Fig. 6. Result of Estimation with Initial s1=8.0 (ms)

2) the system was run with only 3 Callers, and a think time of about 27 millisec-
onds. The measurement data was collected for 12 steps with 5000 calls from
each Caller, per step. The measured throughput was 0.0336 calls/ms, and the
model predicted 0.0349 calls/ms., a relative error of 3.9% which is much
smaller than case 1).

The prediction errors in these two cases were considered satisfactory.

6 Simulation Study

A deeper inquiry into estimator capability was carried out on simulated data for the
system shown in Fig. 7, representing an online bookstore. The CPU demand parame-
ters labeled x1 to x4 in Fig. 7 were estimated from data generated using the values
shown (e.g., the simulation had x1= 12 ms, and then x1 was estimated).

6.1 Experiments

The simulated system was configured with N = 15 concurrent users and single-
threaded servers. The first experiment was set up to run each step for 15000 s, which
included about 10,000 responses. The measured variables for each step were:

 C = user cycle time, which includes the thinking time
 service time of CheckOutService
 service time of ShoppingCart
 service time of BookOrder
 service time of Inventory

Each service time measurement includes the CPU time spent by the entry and the time
the entry blocks and waits for replies from its lower layers.

The simulation was run for 10 steps, which gives 95% confidence intervals less
than 4% of the mean performance measures. These intervals were used to set R, in the
filter, Q was set to 0, and the initial estimates were all set to 5 ms.

The results in Fig. 8 show that the estimator converges quickly, by the second step.
The estimation error was almost zero, except that x1 was underestimated by about

 A Calibration Framework for Software Performance Models 43

5%, perhaps to compensate for an approximation error. The CheckOut service time
has high variance, which may cause its waiting time approximation to be low, and the
user cycle time prediction includes the sum of x1 and this waiting time.

The parameters fitted to data from a simulation with 15 users were used to predict
system performance over a range of users from 5 to 50, with the results:

Table 2. Results for varying loads, and parameters calibrated for N = 15

Users N 5 10 15 20 25 30 35 40 45 50
Measured C 1133.7 1264.9 1472.6 1762.9 2137.2 2539.9 2948.1 3331.9 3794.3 4232.4

Predicted C 1139.9 1264.5 1496.8 1840.7 2232.7 2640.4 3054.1 3470.5 3888.8 4308.1

These results show that the model predictions can be used for conditions that are
quire different from the test conditions. The relative errors are less than 4.5%.

Some variations were introduced into this study:

1. Different initial values. The starting value of 5 for all parameters was replaced by
10, 15 and 20. The estimation results were identical after the first two steps.

2. The measurement step length was reduced from 15000 s to 100 s, and R was
adjusted to reflect the (poor) accuracy of the shorter experiment. Estimates over
10 steps did not converge, showing that there must be sufficient data in the total

 BORequest
[think time Z = 1000ms]

Cient
{N}

Accept
[5ms]

WebServer
{100}

BookOrder createOrder
[x4 = 10 ms]

Read
[1ms]

Write
[10ms]

DBServer

checkOut
[x1 = 12 ms]

CheckOutService

updateStock
[x2 = 8 ms]

Inventory

checkCart
[x3 = 15 ms]

ShoppingCart

(1)

(1)

(1)

(1)
(1)

(1)
(3) (1)

(1) (1)

ClientP

ServerP

DataP

Fig. 7. LQN for simulated bookstore system

44 X. Wu and M. Woodside

Estimated CPU Demands (ms)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

01 23 45 67 89 10 11

Step

C
P

UD
em

a
nd

(m
s
)

x1(estimate) x1(actual) x2(estimate) x2(actual)

x3(estimate) x3(actual) x4(estimate) x4(actual)

Fig. 8. Estimated vs. real CPU demands for bookstore system (Initial x0= 5)

 experiment. Application of stopping rules based on filter accuracy can control
this efficiently.

3. The system was simulated and modeled with multithreaded servers. The results
were similar to Fig. 8, but with larger final errors.

7 Conclusions and Future Research

Concepts have been presented, that are necessary for a general calibration envi-
ronment for performance models of implemented software systems. The calibra-
tion environment is a kind of test environment with significant differences from a
performance test environment. The test is performed not to pass or fail, but to ob-
tain parameter values which can be used to extrapolate the performance values to
other deployments and configurations, using a performance model. A Kalman
Filter estimator for parameters plays a key role in the environment described here,
because it

• allows parameters to be estimated indirectly, from measurements of performance
quantities that are visible at the interfaces of the system,

• provides a sequence of error estimates that allows the test to continue until accu-
racy is sufficient,

• compensates for the influence of drivers and stubs, if submodels for their influence
are included in the model being estimated.

The process defined for the calibration environment includes a test revision process
triggered if the model accuracy is insufficient.

Parameter estimation was illustrated by an example of a substantial real applica-
tion, the VOCAL server for voice-over-IP telephony, and on data from a more
complex simulated system with more processes. In the former case the test driver

 A Calibration Framework for Software Performance Models 45

was modeled to compensate for its influence, not because it loaded the system
up,but because the load generator was strongly influenced by pushback from the
server.

In both cases the resulting model gave response time predictions for conditions dif-
ferent from the test, accurate within a few percent.

The practical value of this approach lies in using the performance model to explore
performance properties, to predict performance for a range of deployments (e.g. for
scalability analysis), and to optimizing the configurations for different customers.
Future research can examine the impact of usage profiles on parameter accuracy (es-
pecially with several classes of workload and many parameters), models that apply
across multiple alternative usage profiles, the best choice of model structure when
there are several candidates, and the choice of measurements when there are many
parameters.

The use of the accuracy estimates derived from the P matrix in Eq (16), to deter-
mine the coverage magnitude or to control the duration of a measurement trial,
requires more extensive experiments and will be reported separately.

The general framework could be used with other estimators, and with other func-
tional forms besides a performance model. However a performance model should in
principle provide a superior fit to the data and superior extrapolation capability, be-
cause its structure is derived from the underlying phenomena of resource usage and
resource saturation, which for instance do not give the usual polynomial or exponen-
tial functions used in regression.

Acknowledgments. The tracking filter was originally developed by Tao Zheng. This
research was supported by the Natural Sciences and Engineering Research Council of
Canada (NSERC).

References

[1] Avritzer, A., Weyuker, E.J.: The Role of Modeling in the Performance Testing of E-
Commerce Applications. IEEE Trans. Software Eng. 30(12) (December 2004)

[2] Avritzer, A., Kondek, J., Liu, D., Weyuker, E.J.: Software performance testing based on
workload characterization. In: Proc. 3rd Int. Workshop on Software and Performance
(WOSP 2002), Rome, pp. 17–24 (2002)

[3] Balsamo, S., DiMarco, A., Inverardi, P., Simeoni, M.: Model-based Performance Predic-
tion in Software Development. IEEE Trans. Software Eng. 30, 295–310 (2004)

[4] Barber, S.: Creating Effective Load Models for Performance Testing with Incomplete
Empirical Data. In: Proc. Sixth IEEE International Workshop on Web Site Evolution
(WSE 2004) (2004)

[5] Bertolino, A., Mirandola, R.: CB-SPE Tool: Putting Component-Based Performance En-
gineering into Practice. In: Proc. 7th Int. Symposium on Component-Based Software En-
gineering, Edinburgh (2004)

[6] Bondarev, E., Muskens, J., de With, P., Chaudron, M., Lukkien, J.: Predicting Real-Time
Properties of Component Assemblies. In: Proc. 30th Euro. Micro. Conf. IEEE, Los
Alamitos (2004)

46 X. Wu and M. Woodside

[7] Dang, L., Jennings, C., Kelly, D.: Practical VoIP Using VOCAL. O’Reilly Media, Sebas-
topol (2002)

[8] Denaro, A.P.G., Emmerich, W.: Early Performance Testing of Distributed Software Ap-
plications. In: Proc. 4th Int. Workshop on Software and Performance, Redwood Shores,
California, January 2004, pp. 94–103 (2004)

[9] Eskenazi, E., Fioukov, A.V., Hammer, D.K., Obbink, H.: Performance prediction for in-
dustrial software with the APPEAR method. In: Proc. 4th Progess Symp. on Embedded
Systems (2003)

[10] Franks, R.G., et al.: Performance Analysis of Distributed Server Systems. In: Proc. 6th
Int. Conf. on Software Quality, Ottawa, October 28-30, 1996, pp. 15–26 (1996)

[11] Franks, R.G., et al.: Layered Queueing Network Solver and Simulator User Manual, Dept.
of Systems and Computer Engineering, Carleton University (December 2005)

[12] Hissam, S.A., et al.: Packaging Predictable Assembly. In: Bishop, J.M. (ed.) CD 2002.
LNCS, vol. 2370, pp. 108–124. Springer, Heidelberg (2002)

[13] Israr, T., Woodside, M., Franks, R.G.: Interaction tree algorithms to extract effective ar-
chitecture and layered performance models from traces. J. Systems and Software 80(4),
474–492 (2007)

[14] Jazwinski, A.H.: Stochastic Processes and Filtering Theory. Academic Press, London
(1970)

[15] Kutner, M.H., Nachtsheim, C.J., Neter, J., Li, W.: Applied Linear Statistical Models, 5th
edn. McGraw-Hill, New York (2005)

[16] Liu, Y., Fekete, A., Gorton, I.: Design-Level Performance Prediction of Component-
Based Applications. IEEE Trans. on Software Eng. 31(11) (November 2005)

[17] Miller, B.P., Callaghan, M.D., Cargille, J.M., Hollingsworth, J.K., Irvin, R.B., Karavanic,
K.L., Kunchithapadam, K., Newhall, T.: The Paradyn Parallel Performance Measurement
Tool. IEEE Computer 28(11) (November 1995)

[18] Musa, J.D.: The Operational Profile in Software Reliability Engineering: An Overview.
IEEE Software 10, 14–32 (1993)

[19] Muskens, J., Chaudron, M.: Prediction of Run-Time Resource Consumption in Multi-task
Component-Based Software Systems. In: Proc. 7th Int. Symp. on Component-Based
Software Engineering, Edinburgh, May 24-25 (2004)

[20] Object Management Group, UML Profile for Schedulability, Performance, and Time
Specification, Version 1.1, OMG document formal/05-01-02 (January 2005)

[21] Rosenberg, J., et al.: The Session Initiation Protocol (SIP), IETF RFC 3261 (June 2002),
http://www.ietf.org/rfc/rfc3261.txt

[22] Smith, C.U., Williams, L.G.: Performance Solutions. Addison-Wesley, Reading (2002)
[23] Woodside, C.M., Neilson, J.E., Petriu, D.C., Majumdar, S.: The Stochastic Rendezvous

Network Model for Performance of Synchronous Client-Server-Like Distributed Soft-
ware. IEEE Trans. on Computers 44(1), 20–34 (1995)

[24] Woodside, M., Petriu, D.C., Petriu, D.B., Shen, H., Israr, T., Merseguer, J.: Performance
by Unified Model Analysis (PUMA). In: Proc. 5th Int. Workshop on Software and Per-
formance, Palma de Mallorca, pp. 1–12 (2005)

[25] Woodside, M., Franks, R.G., Petriu, D.C.: The Future of Software Performance Engineer-
ing. In: Briand, L., Wolf, A. (eds.) Proc. Future of Software Engineering 2007, May 2007,
vol. P2829, pp. 171–187. IEEE Computer Society, Los Alamitos (2007)

[26] Woodside, M., Zheng, T., Litoiu, M.: Service system resource management based on a
tracked layered performance model. In: Proc. 3rd Int. Conf. on Autonomic Computing
(ICAC 2006), pp. 123–133 (2006)

 A Calibration Framework for Software Performance Models 47

[27] Woodside, M.: The Relationship of Performance Models to Data. In: Proc. SPEC Int. Per-
formance Evaluation Workshop (SIPEW 2008). LNCS, vol. 5119, Darmstadt. Springer,
Heidelberg (2008)

[28] Wu, X., Woodside, M.: Performance Modeling from Software Components. In: Proc. 4th
Int. Workshop on Software and Performance, Redwood Shores, CA, pp. 290–301 (2004)

[29] Zheng, T., Woodside, M., Litoiu, M.: Performance Model Estimation and Tracking using
Optimal Filters. IEEE Trans. on Software Eng. (June 2008)

Performance Evaluation of

Embedded ECA Rule Engines: A Case Study

Pablo E. Guerrero�, Kai Sachs, Stephan Butterweck, and Alejandro Buchmann

Dept. of Computer Science, Technische Universität Darmstadt
D-64283 Darmstadt, Germany

{guerrero, sachs, butterweck, buchmann}@dvs.tu-darmstadt.de

Abstract. Embedded systems operating on high data workloads are
becoming pervasive. ECA rule engines provide a flexible environment
to support the management, reconfiguration and execution of business
rules. However, modeling the performance of a rule engine is challenging
because of its reactive nature. In this work we present the performance
analysis of an ECA rule engine in the context of a supply chain sce-
nario. We compare the performance predictions against the measured
results obtained from our performance tool set, and show that despite
its simplicity the performance prediction model is reasonably accurate.

Keywords: Performance Evaluation and Prediction, Embedded Sys-
tems, ECA Rule Engines, Active Functionality Systems.

1 Introduction and Motivation

As software and hardware are becoming more complex, system engineers look
more at architectures that help them cope with the speed at which the business
logic changes. In architectures centered on rule engines [1], developers describe
the business logic in terms of rules composed by events, conditions and actions
(hereafter called ECA rules). These ECA rules are precise statements that de-
scribe, constrain and control the structure, operations and strategy of a business.

Business logic executes on multiple platforms with different capabilities rang-
ing from clusters, through workstations all the way down to small embedded
devices. To relieve developers from knowing in advance on which environment
rules will execute, it is convenient to offer a uniform ECA abstraction for all
of them. We have developed a complete ECA rule engine middleware [2] which
supports a uniform rule definition language across platforms. Our implemented
ECA rule engine offers a high level programming abstraction and thus achieves
a fast change of re-utilizable business logic.

This flexibility comes at a performance cost. Therefore, the study of this
tradeoff is crucial before migrating to an ECA middleware architecture. To avoid
overload and unexpected errors, it is important to know the processing limits
� Supported by the DFG Graduiertenkolleg 492, Enabling Technologies for Electronic

Commerce.

N. Thomas and C. Juiz (Eds.): EPEW 2008, LNCS 5261, pp. 48–63, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Performance Evaluation of Embedded ECA Rule Engines 49

and possible bottlenecks of a rule engine. However, evaluating reactive behavior
is not trivial, especially for embedded devices where resources such as processing
power, memory and bandwidth are scarce.

The main contribution of this work is an analytical performance model for
ECA rule engines. We discuss the difficulties in building a performance model of
an ECA rule engine and present one that, despite its simplicity, accurately pre-
dicts overall system utilization. The measurement and monitoring of the ECA
rule engine and its individual services are supported by our performance eval-
uation tool set. The model is validated against a case study based on SAP’s
intention to move business processing towards the periphery [2].

2 Background

2.1 ECA Rule Engines

An ECA rule engine is a software system that executes Event-Condition-Action
(ECA) rules [3]. ECA rules contain a) a description of the events on which they
should be triggered; b) an optional condition, typically referring to external
system aspects; and c) a list of actions to be executed in response. In general,
the structure of an ECA rule is ON <event> IF <condition> THEN <action>.
Events are relevant changes of state of the environment that are communicated to
the ECA rule engine via messages, possibly originated at heterogeneous sources.

Fig. 1. ECA Rule Manager architecture

Our rule engine, depicted in Figure 1, was designed as a set of independent
services, or bundles, managed by a service platform. For the embedded imple-
mentation we have chosen the Open Services Gateway initiative (OSGi) Service
Platform, because of its minimalist approach to service life-cycle management
and dependency checking. The services are decoupled from each other via a Pub-
lish/Subscribe notification service, for which we use a Rebeca [4] event broker
wrapped as a service. The ECA Manager service exposes a Rule Processor API
over which rules can be (un)registered and (de)activated. The rule execution is

50 P.E. Guerrero et al.

split and delegated to elementary services, namely Event Composition, Condi-
tion Evaluation and Action Execution. Conditions and actions invoke high level
functions exposed by other services such as the Local Repository service. This
plug-in mechanism allows to dynamically extend the set of operations.

2.2 Performance Analysis

Performance has been studied in the context of Active Database Management
Systems (aDBMS) [5,6,7,8]. These are complete “passive” DBMS extended with
the possibility to specify reactive behavior beyond that of triggers. ECA rule
engines, which stem from aDBMS, are more flexible in that they can interact with
any arbitrary system, but do not necessarily provide full database functionality.

The work in [9] identified requirements for aDBMS benchmarks. Important
aspects were the response times of event detection and rule firing, as well as the
memory management of semi-composed events. The BEAST micro-benchmark
[10,11] reported on the performance of various aDBMS available at the time, such
as ACOOD, Ode, REACH and SAMOS. BEAST does not propose a typical
application to test its performance. Konana et al. [12], in contrast, focus on
a specific E-Broker application which allowed the evaluation of latency with
respect to event arrival rate, among others. The experiments in [13] evaluate the
effects of execution semantics (e.g., immediate vs. deferred execution) by means
of simulation.

Previous work has focused on evaluating the performance of systems or pro-
totypes, rather than predicting it. This is due to the complex nature of ECA
rule engines and rule interactions.

3 Analytical Performance Model

In order to understand how a rule engine performs, we begin by defining relevant
performance metrics. These metrics, mostly stemming from [14], aim at a statis-
tical analysis of the rule engine and are not specific to ours, thus they can be used
for an objective comparison. In this paper we employ service time R, throughput
µ, CPU utilization U and queue length to model the system performance.

Building a performance model for an ECA rule engine requires an under-
standing of its rules and their relationships. An initial, straightforward attempt
to come up with an analytic performance model is to consider the entire rule
engine as a single black box. However, this approach is not convenient for our
purposes because it leads to inaccurate results.

At a finer granularity, the model could be unbundled into the event broker
and its individual rules as black boxes, each with a separate queue as depicted
in Figure 2. For the time being, we consider that rules are independent of each
other, i.e. each event can cause the triggering of only one rule. We are aware
that this condition is not the general case, and will be later relaxed. The first
step consists in obtaining the service time Rbroker , associated with the event
broker, and Ri (with i = 1, ..., n), associated with the n deployed rules. From
these service times, the average throughput µ can be obtained as follows:

Performance Evaluation of Embedded ECA Rule Engines 51

µbroker = 1/Rbroker; µi = 1/Ri with i = 1, ..., n

To calculate the CPU utilization U , the workload λ as well as the probability
for a certain event to occur pi (and thus the probability for a certain rule to be
executed) have to be specified:

U = Ubroker +
∑n

i=1 Ui = λ/µbroker +
∑n

i=1 pi ∗ λ
µi

(where
∑n

i=1 pi = 1)

In addition to the assumption of rule independence, this model presents the
problem that it does not allow loops, i.e., cases in which a condition or action
statement feeds an event to the broker and thus a service is visited twice (cf. the
lower dotted line in Figure 2 for rule Rn). In the worst case, under a constant
load, the number of events that revisit these services would grow infinitely. Next,
we present our approach to solve the preceding issues.

Fig. 2. Performance model with rules as black-boxes

3.1 A Simplified Model: Event Paths

The idea of the model is to consider all the possible paths that events may
cause and assign a queue to each (see Figure 3.a). A path is defined as the
sequence of ECA services an event goes through, possibly of different rules. The
simplest paths to be identified are those initiated by events (whether they are
simple or composite) that directly trigger a single rule and then exit the system.
These paths must be then distinguished if, depending on the event values, the
execution may conclude at the Condition Evaluation service or it may proceed
until the Action Execution service. Moreover, the path must be split if it involves
condition or action statements that differ in their service time under certain
situations (first-time invocations, warm-up, caching, etc.). Finally, if a statement
may generate another event which in turn triggers another rule, an extra path is
included with the additional services. This avoids having loops between queues
in the model (i.e., services are never visited twice).

In this approach, the service time Ri of each event path i starts at the time
of the entrance of the event at the rule engine, during its stay at all the involved
services, and stops at its final departure (this is exemplified in the interaction
diagram of Figure 3.b). Measuring each event path’s service time might require

52 P.E. Guerrero et al.

Fig. 3. a) event paths model, b) an actual event path for rule R1

a major effort. However, and as it is shown in Section 4.2, it is acceptable to use
the sum of the service times of the particular services an event path involves.

From the service time of each event path, their average throughput µi can be
obtained, as before, from µi = 1/Ri. To calculate the CPU utilization U for an
event path model, the service times of the event paths need to be measured. The
workload λ also must be defined, i.e., the probability pi for each path to occur is
needed. The CPU utilization for a model with m event paths can be calculated
as follows:

U =
m∑

i=1

Ui = λ ×
m∑

i=1

pi

µi
, with

m∑
i=1

pi = 1 (1)

The simplicity of this model is counterbalanced by the fact that the more rules
exist, the more complex the determination of all event paths gets. Note that this
is not an operational problem but needed for the proper performance analysis.
When the system must manage 100’s or 1000’s of rules, the number of paths
can grow large, thus the usefulness of the model can be restrictive. This is not a
major threat in embedded systems, since given their limited resources, the rule
sets are small. Lastly, the model assumes an understanding of the rules and their
relations.

3.2 Queueing Behavior

To calculate the length of a queue over time, both its service time Ri and the
workload at time t, λt, are needed. The queue size behavior is quite intuitive:
a queue grows (or shrinks) at a rate equal to the difference between the in-
coming events per time unit (λt) and the processed events per time unit (µ).
Mathematically, the queue length Q is recursively constructed with the formula:

Q(t) =
{

0 if t = 0;
max {0; Q(t − 1) + λt − µ} otherwise. (2)

3.3 Performance Evaluation Tool Set

The goal of the tool set is to support the testing phase of the software develop-
ment process by helping measure and monitor different performance metrics of a

Performance Evaluation of Embedded ECA Rule Engines 53

rule engine. The system supports the creation of test data, generation of events,
and different time measurements. Its architecture, depicted in Figure 4 on the
greyed area on the top left, is divided in two parts: one running on a server side,
and the other running on the embedded, target system, as OSGi bundles.

The Data Generator runs on the server side. Its function is to generate the
necessary test data for the performance evaluation. This includes the generation
of domain-specific data, as well as event properties, i.e., metadata describing
events. The user needs to describe each of the event types and provide the
probability of their occurence.

Fig. 4. Performance Evaluation Tool Set architecture

The Event Generator is concerned with generating and publishing at the cor-
rect points in time the necessary events the rule engine needs for a performance
evaluation. The workload parameters such as which events to generate, at which
time, with which frequency and the total run time, are obtained from the Data
Generator. Event generation can take two forms (illustrated in Figure 5). In
the constant mode, events are published following a constant rate ρ, during a
specified interval width �. The rate can be incrementally scaled by a ∆ factor,
which is typically used to increase the event workload and stress the system.
In the impulse mode, events are published following a Gaussian function, which
better suits real world situations of bursty event sequences. This mode must be
parameterized with an interval width � and a peak a. Finally, both modes can
be configured to have a gap after each interval.

The Performance Tracker service is responsible for tracing service times and
queue lengths. There are two mechanisms to measure service times. The first
consists of adding code that starts and stops a timer in the particular compo-
nent methods that are to be measured, and then send the time observations
to the tracker. This mode is used when a measurement starts and stops in the
same component. The second alternative consists in starting a timer, let the
tracker initiate the process to be measured, and then stop it when the process

54 P.E. Guerrero et al.

 0
 2
 4
 6
 8

 10
 12
 14
 16

 0 10 20 30 40 50 60 70 80 90 100

E
ve

nt
s

pe
r

Se
co

nd

time (seconds)

Gaussian, = 15, = 6, a = 15
impulse mode, a = 15

constant mode, = 2, = 0.50
constant mode, = 4, = 1.00

Fig. 5. Different event generation patterns with � = 30 seconds and gap = 5 seconds

is finished. This mode avoids having to modify the system’s source code, but in-
cludes method invocation times, context switches, etc., which don’t necessarily
relate to the service to be measured, and thus is used to measure service times
of event paths. For both modes, the Performance Tracker attempts to measure
the average service time over multiple runs, and not the time an individual event
took. The time observations are stored in buckets. The granularity of the buck-
ets determines the accuracy of the measurements, but also affects the memory
requirement. With each new run, the buckets are flushed to disk for later analy-
sis, which enables their reuse. The queue lengths can also be traced over time,
normally in conjunction with the Event Generator in impulse mode. Since trac-
ing queue length over time requires large amounts of memory, the traces are
restarted with every new impulse.

Additionally, we have implemented a set of scripts which measure, monitor
and collect other metrics, e.g. CPU, which are provided by the OS.

4 Case Study

The selected scenario is part of a supply chain environment, where a supplier
ships goods stacked in pallets to a retail distribution center. These pallets have
RFID tags and wireless sensors attached to them. The supplier’s system sends
an Advance Shipping Notice (ASN) to the retailer. An ASN can be seen as a
document consisting of a list of Electronic Product Codes (EPCs) and optional
constraints about the good’s conditions, which imply the usage of sensors. On
the other end of the supply chain, the retailer’s enterprise application receives
the ASN. Once the shipment arrives at the destination, a comparison between
the delivered goods and the received ASN needs to be carried out.

The retailer’s system is organized in 4 layers (columns in Figure 6). The
inbound process is initiated at the destination when the retailer’s enterprise ap-
plication (1st column) receives an ASN {a}. The document is stored in an ASN
Repository for later use {b}. When a truck arrives at the distribution center,
a dock is assigned for unloading and the pallets are scanned while entering the
warehouse. When an EPC is obtained from a scanned RFID tag on a pallet

Performance Evaluation of Embedded ECA Rule Engines 55

Fig. 6. Advance Shipping Notice inbound process

{c}, the corresponding ASN is fetched from the ASN Repository {d} while (in
parallel) other tags are being aggregated {e}. Additionally, the Device Opera-
tion Layer can initiate sensor data validation of the attached sensor to check the
logged transport conditions {f} (e.g., in case of perishable goods, temperature
and humidity values are relevant, while for other goods shock, acceleration and
pressure values are of interest). Based on the fetched ASN, the accuracy verifi-
cation is carried out {g}. The result of the complete verification is sent to the
Business Process Bridging Layer {h}, where further business logic is applied.

The rule engine implements the functionality of the Device Operation Layer,
running on a Crossbow Stargate hardware platform. This is based on an Intel
X-Scale processor and offers multiple network connectivity options. The system
is bundled with Embedded Linux BSP, on top of which IBM’s J9 Java VM
for the ARM processor runs. The rule engine’s services run on Oscar, an open
source OSGi implementation. The sensor nodes used are Crossbow’s Mica2s. We
implemented a logging component in TinyOS that is able to be wirelessly queried,
analyze its data and answer with the required information. For this prototype we
also experimented with the Skyetek M1 Mini RFID reader attached to a Mica2’s
sensor board, which fed the rule engine with EPCs stored in ISO 15693 tags.

The business logic of the scenario was split into four ECA rules, which are sum-
marized in Table 1. The rule Incoming EPC (R1) listens for EPC events. Its condi-
tion part C1 uses the Local Repository service to search for an ASN containing the
received EPC. If there is no local cached copy, the Local Repository tries to fetch it
from the remote ASN Repository. If no matching ASN is found, an UnexpectedEPC
event is published and the action part of the rule is not executed. If a matching
ASN does exist, the action part of the rule, A1, is executed. First, the EPC is
checked as ‘seen’. Then, if the pallet carries a sensor node, it is queried for its

56 P.E. Guerrero et al.

Table 1. ECA rules for the supply chain management scenario

Rule ID Rule Name Services Reacts to

R1 Incoming EPC C1, A1 EPC
R2 Incoming Sensor Data E2, A2 SensorData | MoteTimeOut
R3 End of Shipment E3, A3 DataCollectionReady | ASNTimeOut
R4 EPC Exception A4 UnexpectedEPC

collected sensor data. Finally, if all the expected data for the ASN has been col-
lected, a DataCollectionReady event is published.

The rule Incoming Sensor Data (R2) is triggered either when a wireless node
sends sensor data (which occurs only when a sensor node is queried) or when
a timer (which is associated with the sensor node query) times out. The action
part A2 registers this incoming sensor data in the ASN at the Local Repository.
The rule End of Shipment (R3) reports the results of the ASN comparison back
to the Business Process Bridging Layer.

Finally, the rule EPC Exception (R4) is triggered when an incoming EPC
does not belong to any ASN. Its action A4 consists in reporting the EPC back
to the Business Process Bridging Layer, together with contextual information
such as date, time, and dock where it was read. Note that rules R1 and R4 react
to simple events, and thus don’t require the Event Composition service, while in
contrast, rules R2 and R3 react to composite events, in this case a disjunction
with a timeout.

4.1 Identification of Event Paths

In this section we analyze the ECA rules of the ASN scenario in order to identify
the event paths. The first step in modeling the ASN scenario with event paths
was to write down all sequences of ECA services that an event can take. Concern-
ing the execution of the rule Incoming EPC, it was very important whether the
corresponding ASN already exists in the Local Repository, or it had to be fetched
from the ASN Repository, since this distinction affected the service time. For that
reason, event paths containing C1 were split into two paths. The event paths were:

1. Event Path I: C1 → A1

Triggered by an EPC event, with no associated sensor data, where the corre-
sponding ASN document still has unchecked EPCs besides the one recently
read.
– I.1: The ASN document already existed in the Local Repository.
– I.2: The ASN document had to be fetched from the ASN Repository.

2. Event Path II: C1 → A1 → E3 → A3

Triggered by an EPC event, with no associated sensor data, where the corre-
sponding ASN document is now completed. A DataCollectionReady event
follows, which reports the ASN comparison results to the Business Process
Bridging Layer.
– II.1: The ASN document already existed in the Local Repository.
– II.2: The ASN document had to be fetched from the ASN Repository.

Performance Evaluation of Embedded ECA Rule Engines 57

3. Event Path III: C1 → A4

This path starts with an EPC event for which no ASN is found, thus is chained
with an UnexpectedEPC event which triggers the report to the server.

4. Event Path IV: C1 → A1 → E2 → A2

This path is similar to path I, except that the EPC has sensor data associ-
ated. The respective sensor node is queried, to which a SensorData event is
answered. This data is finally registered in the ASN document.
– IV.1: The ASN document already existed in the Local Repository.
– IV.2: The ASN document had to be fetched from the ASN Repository.

5. Event Path V: C1 → A1 → E2 → A2 → E3 → A3

This event path is similar to event path IV, aside from the fact that the ASN
does not have unchecked EPCs anymore, hence the ASN is reported back to
the ASN Repository.
– V.1: The ASN document already existed in the Local Repository.
– V.2: The ASN document had to be fetched from the ASN Repository.

4.2 Measured Service Times

This subsection summarizes the results on service times. For these experiments,
the Event Generator was used in constant mode, with ρ = 20 events / minute.
This low frequency ensured that events were not influenced by each other. The
experiments ran for 80 minutes, the first 30 being ignored as warm-up phase.

The service times of individual services and the event paths are summarized
in Table 2 and 3, respectively. We compare both approaches to measure service
times in Figure 7. The absolute (i.e., concrete) min., max. and avg. values for
both the sum of individual service times and event paths is shown in 7(a). Figure
7(b) contrasts the relative service time difference between the event path average
service time (middle greyed area, 100%) against the min., max. and avg. sum of
individual service times. The average deviation for these event paths was 9.25%.

4.3 Queueing Behavior

In this section we present the results about the queueing behavior. To study this,
it is necessary to have event bursts such that queues form, followed by periods
without events. For this purpose, the Event Generator was used in impulse mode,
with intervals of � = 30 seconds and a gap = 4.5 minutes (where no events
were sent). During the peak, the Event Generator published events with a peak

Table 2. Service times for the Event, Condition and Action services

Id Rule Note Event Condition Action

R1 Incoming EPC fetch ASN — 241.75ms 87.78ms
do not fetch ASN — 29.22ms 104.41ms
no ASN available — 192.05ms —

R2 Incoming Sensor Data 6.36ms — 41.47ms
R3 End of Shipment 6.50ms — 253.15ms
R4 Unknown EPC — — 53.83ms

58 P.E. Guerrero et al.

Table 3. Service times for event paths

Event Path Description Service time

I C1 → A1
I.1 do not fetch the ASN 174.15ms
I.2 fetch the ASN 383.59ms

II C1 → A1 → E3 → A3
II.1 do not fetch the ASN 352.93ms
II.2 fetch the ASN 575.87ms

III C1 → A4
fetch the ASN 239.99ms

IV C1 → A1 → E2 → A2
IV.1 do not fetch the ASN 197.50ms
IV.2 fetch the ASN 449.46ms

V C1 → A1 → E2 → A2 → E3 → A3
V.1 do not fetch the ASN 420.61ms
V.2 fetch the ASN 632.64ms

I.1
I.2

II.1
II.2
III

IV.1
IV.2
V.1
V.2

 0 100 200 300 400 500 600 700

ev
en

t p
at

h

event path
sum

(a) Absolute service times (ms)

I.1
I.2

II.1
II.2
III

IV.1
IV.2
V.1
V.2

40% 60% 80% 100% 120% 140% 160%

ev
en

t p
at

hs

(b) Relative service time difference (%)

Fig. 7. Service time measurements: absolute values (a) and relative difference (b)

a = 15 events/s. Once this 5-minute process finished, it was repeated again. For
the measurement of the queue length, the Performance Tracker service was used.
Each time the Event Generator started sending events for the 30 seconds period,
it also started the queue trace at the tracker, hence queue lengths of all observed
queues were recorded at every second. The queues to be observed were selected
by the Event Generator in the initialization phase.

Now we present the queueing behavior of the Condition Evaluation service
for the rule R1, i.e., C1. For this purpose, a test was carried out where the ASN
Repository stores 200 ASNs, each containing one EPC with no sensor data. The
queue length predictions were based on the service times for C1 from Table 2. The
Condition Evaluation service does not have its own queue. Indeed, events were
queued in the Event Broker service, waiting for being serviced by C1. The Event
Broker can be seen as the queue of the Condition Service because its service
time is negligible. The Event Generator split the � interval in five stages. The
event arrival rate at the Broker varied at these stages according to the workload
λt as defined in Equation 3.

Performance Evaluation of Embedded ECA Rule Engines 59

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50

qu
eu

e
le

ng
th

 (
ev

en
ts

)

time (seconds)

1st. impulse
2nd. impulse
3rd. impulse
4th. impulse
5th. impulse
6th. impulse

prediction

Fig. 8. Measured and predicted queue length for service C1

λt =
{

1 2
3 events/s if 1 ≤ t ≤ 6 or 25 ≤ t ≤ 30
5 events/s if 7 ≤ t ≤ 12 or 19 ≤ t ≤ 24
15 events/s if 13 ≤ t ≤ 18

(3)

From C1’s service time (where the ASN must be fetched), we obtained µ =
1/0.24175 events/s = 4.13 events/s. By using Equation 2, the queue length can
be calculated. For the measurement, the Event Generator ran for a period of
30 minutes, thus 6 queue traces were obtained. The comparison between the
predicted values and each of the 6 runs, presented in Figure 8, shows that the
calculations were considerably accurate.

Next, we discuss the more general case where multiple interacting services
operated sequentially on incoming events. For space reasons, we consider here
only the event path II.1, which involved the sequence of services C1 → A1 →
E3 → A3. The ECA rule engine was designed with a single real queue for all
the incoming events. The resulting behavior is difficult to calculate analytically.
Therefore, we wrote a small script that simulated it. On the measurements side,
the Event Generator was configured to run over a 40 minutes period. We compare
the simulated and empirical measurements in Figure 9 (a) and (b), respectively.

These two plots are considerably similar, except at t ≥ td. This difference
revealed a relation between the rules R1 and R3 which was unforeseen at the
time we designed the queue length simulator. The issue arises when an EPC
event for a particular ASN must wait too long in the Broker queue. When this
wait exceeds a predefined timer, an ASNTimeOut event is triggered, which sends
the (incomplete) ASN document back to the repository and thus has to be re-
fetched. This also explains the higher amount of events on the queues of R3.

4.4 CPU Utilization

We now present the results on CPU utilization. In this supply chain scenario, the
workload is distributed across 5 EPC types, to which we assigned a percentage
in Table 4(a). This selection covered the four rules of the scenario.

In order to calculate the CPU utilization using Equation 1, however, the prob-
abilities of each event path (and not the EPC types) are needed. For this purpose,
we fixed the number of EPCs per ASN for this experiments to 100 EPCs. With

60 P.E. Guerrero et al.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90

qu
eu

e
le

ng
th

 (
ev

en
ts

)

time (seconds)

C1
A1
E3
A3

(a) Prediction of queue length by means of simulation

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90

qu
eu

e
le

ng
th

 (
ev

en
ts

)

time (seconds)
td

C1
A1
E3
A3

(b) Measured queue length

Fig. 9. Predicted (a) and measured (b) queue lengths for event path II.1

this consideration, the probabilities of each event path were shaped. First, the
25% assigned to Checked EPCs were mapped to event path I.1, I.2, II.1 and
II.2, because a Checked EPC always causes the triggering of R1, followed (some-
times) by R3 if the ASN document is completed. Second, the 10% of Unexpected
EPCs were mapped to event path III. Finally, the remaining EPC types (which
accounts for 65%) were mapped to event paths IV.1, IV.2, V.1 and V.2. These
probabilities are shown in Table 4(b).

The average service time can be calculated using the information from
Table 3 and the formula: µ =

∑
i∈paths pi ∗ µi = 222.63 ms, with

∑
i∈paths pi

= 1. The CPU utilization, in turn, is calculated from: Ut = λt/µ. The CPU uti-
lization was monitored using the standard Linux top command; a script piped
it to a file for later analysis. Both for the calculations and measurements, the
average number of incoming events started with ρ = 40 events/minute, and it
was incremented by a factor ∆ = 0.5 every � = 10 minutes. The prediction and
the measurement were executed over a total of 65 minutes.

In Figure 10 we show a plot of the published events over time (right y axis),
together with the measured and predicted results (left y axis). It is easy to notice
that the utilization remained constant for 10 minutes and then increased slightly.
However, the measured utilization drifted significantly from the predicted one.

Performance Evaluation of Embedded ECA Rule Engines 61

Table 4. Settings for CPU utilization prediction and measurement

(a) Workload characterized according
to event types

EPC type: Assigned %

Checked EPC 25%
Checked EPC with 25%
sensor data
Checked EPC with 20%
missing sensor data
Checked EPC with 20%
infringing sensor data
Unexpected EPC 10%

(b) Event path proba-
bilities

Event Path %

I.1 ⇐ 23%
I.2 ⇐ 1%
II.1 ⇐ 0%
II.2 ⇐ 1%
III ⇐ 10%

IV.1 ⇐ 59%
IV.2 ⇐ 3%
V.1 ⇐ 0%
V.1 ⇐ 3%

At higher λ rates, the difference was about 15%, which turned the prediction un-
acceptable. The reason for this was that the ECA rules executed several actions
that were I/O bound, particularly blocking invocations with large roundtrips.
For instance, the fetching of ASN objects (i.e., XML documents) was imple-
mented by an RMI call which took about 160ms. Equation 1, though, relies on
the assumption that the CPU is kept busy all the time. Given this consideration,
we adjusted the service times by subtracting pure I/O operation times associ-
ated to each event path, and recalculated the average throughput. As a result,
the (adjusted) CPU utilization prediction, also plotted in Figure 10, resulted a
reasonable approximation of the observed one.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

 0

 40

 80

 120

 160

 200

C
PU

 u
til

iz
at

io
n

(%
)

ev
en

ts
 /

m
in

ut
e

time (minutes)

Events generated, constant mode, = 40, = 0.50, = 10m
measured utilization
predicted utilization

(adjusted) predicted utilization

Fig. 10. Measured and predicted CPU utilization using the event path model

5 Conclusions and Future Work

We presented a performance evaluation of an ECA rule engine on an embedded
device. This area has not been well explored because it deals with two complex
domains: the resource constraints of embedded devices and the complex reactive
nature of ECA systems.

The model we developed eliminates, to a certain extent, the problems of rule
independence and revisiting events. The proposed solution, based on identifying

62 P.E. Guerrero et al.

event paths, has shown to be reasonably accurate in predicting performance. Fur-
thermore, the presented work helped understand the entire system more deeply
and enhance it in different ways. Queueing behavior analysis exposed timing
dependencies between rules that were not evident before.

The model’s simplicity can be offset by the effort required to find manually all
event paths and obtain their probabilities. It might be useful to integrate a tool
that, by statically analyzing the ECA rules, automatically identifies the paths
that the events may take. By dynamically tracing incoming events, the relevant
paths could be identified and their probability determined by the frequency with
which the path was traced. Finally, we are working on developing a comprehen-
sive methodology for performance evaluation of ECA rule engines, independently
of the underlying platform under test. This requires the application of the steps
described in this paper to further projects to confirm the validity of the method
based on event paths.

References

1. Bornhövd, C., Lin, T., Haller, S., Schaper, J.: Integrating Automatic Data Acqui-
sition with Business Processes - Experiences with SAP’s Auto-ID Infrastructure.
In: 30th VLDB, Toronto, Canada (2004)

2. Guerrero, P.E., Sachs, K., Cilia, M., Bornhövd, C., Buchmann, A.: Pushing Busi-
ness Data Processing Towards the Periphery. In: 23rd ICDE, Istanbul, Turkey, pp.
1485–1486. IEEE Computer Society, Los Alamitos (2007)

3. Cilia, M.: An Active Functionality Service for Open Distributed Heterogeneous En-
vironments. PhD thesis, Dept. of Computer Science, Technische Universität Darm-
stadt, Germany (August 2002)

4. Mühl, G.: Large-Scale Content-Based Publish/Subscribe Systems. PhD thesis,
Dept. of Computer Science, Technische Universität Darmstadt, Germany (Sep-
tember 2002)

5. Widom, J., Ceri, S. (eds.): Active Database Systems: Triggers and Rules for Ad-
vanced Database Processing. Morgan Kaufmann Series in Data Management Sys-
tems, vol. 77. Morgan Kaufmann, San Francisco (1996)

6. Paton, N.W. (ed.): Active Rules in Database Systems. Monographs in Computer
Science. Springer, New York (1999)

7. Dittrich, K.R., Gatziu, S., Geppert, A.: The Active Database Management Sys-
tem Manifesto: A Rulebase of ADBMS Features. In: Sellis, T.K. (ed.) RIDS 1995.
LNCS, vol. 985, pp. 3–20. Springer, Heidelberg (1995)

8. Cilia, M.: Active Database Management Systems. In: Rivero, L.C., Doorn, J.H.,
Ferraggine, V.E. (eds.) Encyclopedia of Database Technologies and Applications,
pp. 1–4. Idea Group (2005)

9. Zimmermann, J., Buchmann, A.P.: Benchmarking Active Database Systems: A Re-
quirements Analysis. In: OOPSLA 1995 Workshop on Object Database Behavior,
Benchmarks, and Performance, pp. 1–5 (1995)

10. Geppert, A., Gatziu, S., Dittrich, K.: A Designer’s Benchmark for Active Database
Management Systems: 007 Meets the BEAST. In: Sellis, T.K. (ed.) RIDS 1995.
LNCS, vol. 985, pp. 309–326. Springer, Heidelberg (1995)

11. Geppert, A., Berndtsson, M., Lieuwen, D., Zimmermann, J.: Performance Evalua-
tion of Active Database Management Systems Using the BEAST Benchmark. TR
IFI-96.01, Dept. of Computer Science, University of Zurich (1996)

Performance Evaluation of Embedded ECA Rule Engines 63

12. Konana, P., Mok, A.K., Lee, C.G., Woo, H., Liu, G.: Implementation and Perfor-
mance Evaluation of a Real-Time E-Brokerage System. In: 21st IEEE Real-Time
Systems Symposium, pp. 109–118 (2000)

13. Baralis, E., Bianco, A.: Performance Evaluation of Rule Execution Semantics in Ac-
tive Databases. In: 13th ICDE, pp. 365–374. IEEE Computer Society, Los Alamitos
(1997)

14. Menasce, D.A., Almeida, V.A.F.: Capacity Planning for Web Services: Metrics,
Models, and Methods. Prentice Hall PTR, NJ (2001)

Towards State Space Reduction Based on

T-Lumpability-Consistent Relations

Marco Bernardo

Università di Urbino “Carlo Bo” – Italy
Istituto di Scienze e Tecnologie dell’Informazione

Abstract. Markovian behavioral equivalences can be exploited for state
space reduction before performance evaluation takes place. It is known
that Markovian bisimilarity corresponds to ordinary lumpability and
that Markovian testing and trace equivalences correspond to a coarser
exact relation we call T-lumpability. While there exists an ordinary-
lumpability-consistent aggregation algorithm, this is not the case with
T-lumpability. Based on the axiomatization of Markovian testing and
trace equivalences, we provide a sufficient condition for T-lumpability
that can easily be embedded in the aggregation algorithm for ordinary
lumpability, thus enhancing the potential for exact state space reduction.
We also identify a class of systems – those providing incremental services
– for which the resulting aggregation algorithm turns out to be useful.

1 Introduction

Markovian behavioral equivalences [2] are a formal means to establish whether
different models represent systems that behave the same from the functional
and performance point of view. For instance, Markovian bisimilarity [6] consid-
ers two models to be equivalent whenever they are able to mimic each other’s
functional and performance behavior step by step. Instead, Markovian testing
equivalence [1] considers two models to be equivalent whenever an external ob-
server interacting with them by means of tests is not able to distinguish between
them from the functional or performance viewpoint. Finally, Markovian trace
equivalence [8] considers two models to be equivalent whenever they are able to
execute computations with the same functional and performance characteristics.

These equivalences can be exploited in practice for reducing the state space
underlying a model before functional verification and performance evaluation
take place. In our Markovian framework, the state space underlying a model
represents a continuous-time Markov chain (CTMC). Useful CTMC-level aggre-
gations are those that are exact. Given two CTMCs such that the second one is
an exact aggregation of the first one, the transient/stationary probability of be-
ing in a macrostate of the second CTMC is the sum of the transient/stationary
probabilities of being in one of the constituent microstates of the first CTMC.
This means that, when going from the first CTMC to the second CTMC, all the
performance characteristics are preserved.

N. Thomas and C. Juiz (Eds.): EPEW 2008, LNCS 5261, pp. 64–78, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Towards State Space Reduction 65

Markovian bisimilarity is consistent with an exact CTMC-level relation that is
known under the name of ordinary lumpability [6,3], whereas Markovian testing
and trace equivalences induce a coarser exact CTMC-level relation that we call
T-lumpability [1]. Therefore, all the three Markovian behavioral equivalences are
equally useful in principle for state space reduction purposes.

However, while there exists a polynomial-time aggregation algorithm for
ordinary-lumpability [5], this is not the case with T-lumpability. In fact, while
in the case of ordinary-lumpability-based state space reduction the states that
can be aggregated are precisely those equivalent to each other, two T-lumpable
states that are not ordinarily lumpable cannot be aggregated. This can be seen
by looking at the axiomatization of Markovian testing and trace equivalences on
a typical Markovian process calculus. Their characterizing laws show that the
states that can be aggregated are not the two we are considering, but the ones
reachable from them in one transition [1].

The contribution of this paper is to derive a sufficient condition for
T-lumpability from the characterizing laws of Markovian testing and trace equiv-
alences, which can be smoothly embedded as a state space preprocessing step
in the aggregation algorithm for ordinary lumpability. Besides enhancing the
potential for exact state space reduction in practice, we also identify a class
of systems for which the resulting aggregation algorithm turns out to be useful.
This is the class of systems providing incremental services, i.e. services consisting
of sequences of phases such that each service is an extension of another.

This paper is organized as follows. In Sect. 2 we present a motivating example
for our work, in which we introduce incremental services. In Sect. 3 we recall the
definitions of Markovian bisimilarity, Markovian testing equivalence, and Markov-
ian trace equivalence in a process algebraic framework, so that we can later on
exhibit their characterizing equational laws. In Sect. 4 we recall the correspond-
ing exact CTMC-level relations, i.e. ordinary lumpability and T-lumpability. In
Sect. 5 we discuss the state space reduction issue by illustrating the characteriz-
ing laws of the three Markovian behavioral equivalences. In Sect. 6 we show how
to modify the aggregation algorithm for ordinary lumpability in a way that takes
into account the characterizing laws of the T-lumpability-consistent Markovian
behavioral equivalences. Finally, Sect. 7 contains some concluding remarks.

2 Motivating Example: Incremental Services

Consider a set of services, each of which can be described as a sequence of
phases. Then we can define the length of each of those services as the number
of its phases and we can say that one of them is a prefix of another one if the
phases of the former occur at the beginning of the latter exactly in the same
order. We call those services incremental if each of them is a prefix of another
one, except for the longest one.

We can distinguish between two ways of using incremental services, which we
call eager and lazy, respectively. In the eager case, the client preselects the entire
sequence of phases, hence the server knows in advance the specific service to be

66 M. Bernardo

provided. By contrast, in the lazy case, the client decides what to do after each
phase, so the specific service to be delivered is known only at the end. Whether
the behavior of the client is eager or lazy has a remarkable impact on the size of
the state space of the incremental service model.

In order to formalize this behavior, we can use a Markovianprocess calculus con-
sisting of a set P of process terms built from a set Name × RI >0 of exponentially
timed actions and a set of typical operators like the inactive process 0, the action
prefix operator <a, λ>.P , the alternative composition operator governed by the
race policy P1+P2, the parallel composition operator P1 ‖S P2, and possibly recur-
sive defining equations of the form B

∆= P . The semantics of each process term P is
constructed by applying operational rules that yield a state-transition graph [[P]]
called labeled multitransition system, whose states correspond to process terms
derivable from P and whose transitions are labeled with actions.

As an example of incremental services, consider an Italian restaurant. What
can be served is an appetizer, or an appetizer followed by the first course (typi-
cally pasta), or an appetizer followed by the first course and the second course
(typically meat or fish with some vegetables), or an appetizer followed by the two
main courses and some cheese, or an appetizer followed by the two main courses,
some cheese and a dessert, or an appetizer followed by the two main courses,
some cheese, a dessert and some fruit, or a complete Italian meal (appetizer,
first course, second course, cheese, dessert, fruit, and espresso).

Suppose that a client takes 1/λ time units on average to read the menu, that
course i is prepared and served in 1/µi time units on average for 1 ≤ i ≤ 7,
and that subsequence i of the complete meal is selected with probability pi for
1 ≤ i ≤ 7.

An eager client preselects the desired subsequence of the complete meal, hence
the related behavior can be described as follows:

Eager ∆= <read , λ · p1>.<appetizer , µ1>.0 +
<read , λ · p2>.<appetizer , µ1>.<first course, µ2>.0 +
<read , λ · p3>.<appetizer , µ1>.<first course, µ2>.

<second course, µ3>.0 +
<read , λ · p4>.<appetizer , µ1>.<first course, µ2>.

<second course, µ3>.<cheese, µ4>.0 +
<read , λ · p5>.<appetizer , µ1>.<first course, µ2>.

<second course, µ3>.<cheese, µ4>.
<dessert , µ5>.0 +

<read , λ · p6>.<appetizer , µ1>.<first course, µ2>.
<second course, µ3>.<cheese, µ4>.
<dessert , µ5>.<fruit , µ6>.0 +

<read , λ · p7>.<appetizer , µ1>.<first course, µ2>.
<second course, µ3>.<cheese, µ4>.
<dessert , µ5>.<fruit , µ6>.<espresso, µ7>.0

A lazy client instead decides after each course whether to stop or to proceed
with the next course, hence the related behavior can be described as follows
where pl−r stands for

∑
l≤i≤r pi with 1 ≤ l ≤ r ≤ 7:

Towards State Space Reduction 67

Lazy ∆= <read , λ>.Lazy1

Lazy1
∆= <appetizer , µ1 · p1>.0 + <appetizer , µ1 · p2−7>.Lazy2

Lazy2
∆= <first course, µ2 · p2

p2−7
>.0 + <first course, µ2 · p3−7

p2−7
>.Lazy3

Lazy3
∆= <second course, µ3 · p3

p3−7
>.0 + <second course, µ3 · p4−7

p3−7
>.Lazy4

Lazy4
∆= <cheese, µ4 · p4

p4−7
>.0 + <cheese , µ4 · p5−7

p4−7
>.Lazy5

Lazy5
∆= <dessert , µ5 · p5

p5−7
>.0 + <dessert , µ5 · p6−7

p5−7
>.Lazy6

Lazy6
∆= <fruit , µ6 · p6

p6−7
>.0 + <fruit , µ6 · p7

p6−7
>.Lazy7

Lazy7
∆= <espresso, µ7>.0

The labeled multitransition systems [[Eager]] and [[Lazy]] are shown below,
where every action name is represented through its initials:

µa, 1

µfc, 2

sc,µ3

µa, 1

µfc, 2

µa, 1 µa, 1

µfc, 2

sc,µ3

c, µ4

µa, 1

µfc, 2

sc,µ3

c, µ4

d,µ5

µa, 1

µfc, 2

sc,µ3

c, µ4

d,µ5

f, µ6

p. 2-7

. 3-7p /p2-7

. 4-7p /p3-7

.p /p5-7 4-7

.p /p6-7 5-7

f, µ6. 7p /p6-7

µa, 1

µfc, 2

sc,µ3

c, µ4

d,µ5

f, µ6

e, µ7 e, µ7

f, µ6. 6-7p /p6

d,µ5. 5p /p5-7

c, µ4. 4p /p4-7

sc,µ3. 3-7p /p3

.µfc, 2 2p /p2-7

a,µ p1.1

λ

a,µ1

µfc, 2

sc,µ3

c, µ4

d,µ5

λ .p1 λ .p2 λ .p3 λ .p4 λ .p5
λ .p6

λ .p7r,
r, r, r, r, r,

r,
r,

?

As can be noted, [[Eager]] has 30 states and 35 transitions, whereas [[Lazy]] has
only 9 states and 14 transitions. It can also be observed that the time taken by
the client to consume a meal follows a phase-type distribution in both cases.

While the eager behavior occurs more frequently in practice, the lazy behav-
ior is more convenient when analyzing incremental services due to its reduced
state space. In general, if we consider a set of k ≥ 2 incremental services, its
eager description will have

∑
1≤i≤k i = k·(k+1)

2 = O(k2) states, whereas its lazy
description will have only O(k) states.

Switching from one description to the other – and hence from one phase-
type distribution to the other – is feasible only if they are equivalent. If we use
a behavioral equivalence like Markovian bisimilarity, which is highly sensitive
to branching points, there is no hope to relate the two descriptions. What we
need is thus a less discriminating equivalence. It can be easily shown that the

68 M. Bernardo

two descriptions are Markovian testing equivalent. But, unfortunately, there is
no aggregation algorithm that, consistently with Markovian testing equivalence,
would allow us to transform the labeled multitransition system for the eager
description into the labeled multitransition system for the lazy description.

3 Markovian Behavioral Equivalences

In this section we recall the definitions of Markovian bisimilarity, Markovian
testing equivalence, and Markovian trace equivalence in our process algebraic
framework.

3.1 Exit Rates and Computations

Markovian behavioral equivalences are based on concepts like the exit rates
of process terms and the traces, the probabilities, and the durations of their
computations.

The exit rate of a process term is the rate at which it is possible to leave the
state corresponding to the term. We distinguish among (a) the rate at which
the process term can execute actions of a given name that lead to a given set of
terms, (b) the total rate at which the process term can execute actions of a given
name, and (c) the total exit rate of the process term. The latter is the sum of
the rates of all the actions that the process term can execute, and coincides with
the reciprocal of the average sojourn time in the CTMC state corresponding to
the process term.

Definition 1. Let P ∈ P, a ∈ Name, and C ⊆ P. The exit rate of P when
executing actions of name a that lead to C is defined through the following non-
negative real function:

rate(P, a, C) =
∑

{|λ | ∃P ′ ∈ C. P
a,λ

−−−→ P ′ |}

where the summation is taken to be zero whenever the multiset is empty.

Definition 2. Let P ∈ P. The total exit rate of P is defined through the follow-
ing non-negative real function:

ratet(P) =
∑

a∈Name
rate(P, a,P)

where rate(P, a,P) is the total exit rate of P with respect to a.

A computation of a process term is a sequence of transitions that can be executed
starting from the state corresponding to the term. The length of a computation
is given by the number of transitions occurring in it. We say that two compu-
tations are independent of each other if neither is a proper prefix of the other
one. In the following, we denote by Cf(P) and If(P) the multisets of finite-length
computations and of finite-length independent computations of P ∈ P , respec-
tively. Below we inductively define the trace, the execution probability, and the
stepwise average duration of an element of Cf(P), using symbol “◦” to denote
the sequence concatenation operator.

Towards State Space Reduction 69

Definition 3. Let P ∈ P and c ∈ Cf(P). The trace associated with the execution
of c is the sequence of action names labeling the transitions of c, which is defined
by induction on the length of c through the following Name∗-valued function:

trace(c) =

{
ε if length(c) = 0

a ◦ trace(c′) if c ≡ P
a,λ

−−−→ c′

where ε is the empty trace.

Definition 4. Let P ∈ P and c ∈ Cf(P). The probability of executing c is the
product of the execution probabilities of the transitions of c, which is defined by
induction on the length of c through the following RI]0,1]-valued function:

prob(c) =

{
1 if length(c) = 0

λ
ratet(P) · prob(c′) if c ≡ P

a,λ
−−−→ c′

We also define the probability of executing a computation of C as:

prob(C) =
∑
c∈C

prob(c)

for all C ⊆ If(P).

Note that prob(C) would not be well defined if set C contained computations
that are not indepedent of each other.

Definition 5. Let P ∈ P and c ∈ Cf(P). The stepwise average duration of c
is the sequence of the average sojourn times in the states traversed by c, which
is defined by induction on the length of c through the following (RI >0)∗-valued
function:

time(c) =

{
ε if length(c) = 0

1
ratet(P) ◦ time(c′) if c ≡ P

a,λ
−−−→ c′

where ε is the empty stepwise average duration. We also define the multiset of
computations of C whose stepwise average duration is not greater than θ as:

C≤θ = {| c ∈ C | length(c) ≤ length(θ) ∧
∀i = 1, . . . , length(c). time(c)[i] ≤ θ[i] |}

for all C ⊆ Cf(P) and θ ∈ (RI >0)∗.

The reason why we consider the stepwise average duration instead of the stan-
dard average duration (intended as the sum of the average sojourn times in the
traversed states) is explained in [1].

70 M. Bernardo

3.2 Markovian Bisimilarity

Markovian bisimilarity [6] considers two process terms to be equivalent whenever
they are able to mimic each other’s functional and performance behavior step
by step.

Whenever a process term can perform actions with a certain name that reach
a certain set of terms at a certain speed, then any process term equivalent to the
given one has to be able to respond with actions with the same name that reach
an equivalent set of terms at the same speed. This can be formalized through
the comparison of the process term exit rates.

Definition 6. An equivalence relation B ⊆ P × P is a Markovian bisimulation
iff, whenever (P1, P2) ∈ B, then for all action names a ∈ Name and equivalence
classes C ∈ P/B:

rate(P1, a, C) = rate(P2, a, C)

Since the union of all the Markovian bisimulations can be proved to be the
largest Markovian bisimulation, the definition below follows.

Definition 7. Markovian bisimilarity, denoted by ∼MB, is the union of all the
Markovian bisimulations.

3.3 Markovian Testing Equivalence

Markovian testing equivalence [1] considers two process terms to be equivalent
whenever an external observer interacting with them by means of tests is not
able to distinguish between them from the functional or performance viewpoint.

A test can be represented through another process term, which interacts with
the term to be tested by means of a parallel composition operator that enforces
synchronization on all action names. Since a test should be conducted in a finite
amount of time, for the test formalization we restrict ourselves to non-recursive,
finite-state process terms. In our Markovian framework, tests are made out of
passive actions, each equipped with a weight w ∈ RI >0. The idea is that, in any
of its states, a process term to be tested probabilistically generates the proposal
of an action to be executed among those enabled in that state, then the test
reacts by probabilistically selecting a passive action (if any) with the same name
as the proposed action.

Definition 8. The set T of tests is generated by the following syntax:

T ::= s | T ′

T ′ ::= <a, ∗w>.T | T ′ + T ′

where a ∈ Name, w ∈ RI >0, and s stands for success.

Let us denote by −−−→T the transition relation for tests. The following opera-
tional rule defines the interaction of P ∈ P and T ∈ T :

Towards State Space Reduction 71

P
a,λ

−−−→ P ′ T
a,∗w

−−−→T T ′

P ‖ T
a,λ· w

weight(T,a)

−−−−−−→ P ′ ‖ T ′

where weight(T, a) =
∑

{|w | ∃T ′. T
a,∗w

−−−→T T ′ |} is the weight of T with respect
to a.

Definition 9. Let P ∈ P and T ∈ T . The interaction system of P and T is
process term P ‖ T , where we say that:

– A configuration is a state of the labeled multitransition system underlying
P ‖ T .

– A configuration is successful iff its test component is s.
– A computation is successful iff so is the last configuration it reaches.

We denote by SC(P, T) the multiset of successful computations of Cf(P ‖ T).

Note that SC(P, T) ⊆ If(P ‖ T), because of the maximality of the successful
test-driven computations, and that SC(P, T) is finite, because of the finitely-
branching structure of the considered terms.

Markovian testing equivalence relies on comparing the process term probabil-
ities of performing a successful test-driven computation within a given sequence
of average amounts of time.

Definition 10. Let P1, P2 ∈ P. We say that P1 is Markovian testing equivalent
to P2, written P1 ∼MT P2, iff for all tests T ∈ T and sequences θ ∈ (RI >0)∗ of
average amounts of time:

prob(SC≤θ(P1, T)) = prob(SC≤θ(P2, T))

3.4 Markovian Trace Equivalence

Markovian trace equivalence [8] considers two process terms to be equivalent
whenever they are able to execute computations with the same functional and
performance characteristics.

It relies on comparing the process term probabilities of performing a compu-
tation within a given sequence of average amounts of time.

Definition 11. Let P ∈ P, c ∈ Cf(P), and α ∈ Name∗. We say that c is com-
patible with α iff:

trace(c) = α
We denote by CC(P, α) the multiset of finite-length computations of P that are
compatible with α.

Note that CC(P, α) ⊆ If(P), because of the compatibility of the computations
with the same trace α, and that CC(P, α) is finite, because of the finitely-
branching structure of the considered terms.

72 M. Bernardo

Definition 12. Let P1, P2 ∈ P. We say that P1 is Markovian trace equivalent to
P2, written P1 ∼MTr P2, iff for all traces α ∈ Name∗ and sequences θ ∈ (RI >0)∗

of average amounts of time:
prob(CC≤θ(P1, α)) = prob(CC≤θ(P2, α))

4 Induced CTMC-Level Relations

All of the three Markovian behavioral equivalences recalled in the previous sec-
tion induce CTMC-level relations. In order to ease the formalization of these
relations, we take an arbitrary CTMC with state space S, whose transitions
are labeled not only with rates but also with the same action name a. In other
words, a CTMC is viewed as a labeled transition system in which the label set is
{a}× RI >0. This allows us to define the induced CTMC-level relations as special
cases of the considered Markovian behavioral equivalences.

Markovian bisimilarity is consistent with a CTMC-level relation known under
the name of ordinary lumpability [6,3].

Definition 13. Let s1, s2 ∈ S. We say that s1 and s2 are ordinarily lumpable iff
there exists a partition O of S such that s1 and s2 belong to the same equivalence
class and, whenever z1, z2 ∈ O for some O ∈ O, then for all O′ ∈ O:∑

z′∈O′
{|λ | z1

a,λ
−−−→ z′ |} =

∑
z′∈O′

{|λ | z2

a,λ
−−−→ z′ |}

Markovian testing and trace equivalences induce a coarser CTMC-level relation
that we call T-lumpability [1].

Definition 14. Let s1, s2 ∈ S. We say that s1 and s2 are T-lumpable iff for all
tests T ∈ T and sequences θ ∈ (RI >0)∗ of average amounts of time:

prob(SC≤θ(s1, T)) = prob(SC≤θ(s2, T))

Since the transitions of the CTMC are all labeled with the same action name,
the branching structure of tests adds no distinguishing power with respect to
traces. Thus, the definition above is equivalent to the one below.

Definition 15. Let s1, s2 ∈ S. We say that s1 and s2 are T-lumpable iff for all
traces α ∈ Name∗ and sequences θ ∈ (RI >0)∗ of average amounts of time:

prob(CC≤θ(s1, α)) = prob(CC≤θ(s2, α))

5 An Axiom-Based View of State Space Reduction

According to Markovian bisimilarity (resp. ordinary lumpability), two equivalent
states can reach sets of equivalent states by performing transitions with the
same names and the same total rates. This causes equivalent states of a labeled
multitransition system (resp. CTMC) to be precisely the states that can be
aggregated. In other words, the partition induced by the equivalence relation,

Towards State Space Reduction 73

whose elements correspond to equivalence classes, can be directly exploited for
state space reduction purposes. This can easily be seen through the equational
law characterizing ∼MB, which establishes that:

<a, λ1>.P1 + <a, λ2>.P2 ∼MB <a, λ1 + λ2>.P

whenever:
P1 ∼MB P ∼MB P2

Its effect at the state space reduction level is shown below:

+1λ 2λ

P1 P2

a, a,1λ 2λ a,

P

From∼MB⊂∼MT⊂∼MTr we derive that more states can be related to each other
when using Markovian testing and trace equivalences (resp. T-lumpability). How-
ever, these additional equivalent states must be carefully treated at state space
reduction time. The reason is that they cannot be aggregated. What turns out is
that the states they reach – which are not necessarily equivalent to each other –
can be sometimes aggregated. This is clearly shown by the characterizing law for
∼MT – which subsumes the one for ∼MB – and the characterizing law for ∼MTr –
which subsumes the one for ∼MT [1].

The first characterizing law establishes that ∼MT allows choices to be deferred
as long as they are related to branches starting with actions having the same
name – as in the ∼MB case – that are immediately followed by actions having
the same names and the same total rates in all the branches. Formally:∑

i∈I

<a, λi>.
∑

j∈Ji

<bi,j , µi,j>.Pi,j ∼MT

<a, Σ
k∈I

λk>.
∑
i∈I

∑
j∈Ji

<bi,j,
λi

Σk∈I λk
· µi,j>.Pi,j

whenever:

– I is a finite index set with |I| ≥ 2.
– Ji is a finite index set for all i ∈ I, with the related summation being 0

whenever Ji = ∅.
– For all i1, i2 ∈ I and b ∈ Name:∑

j∈Ji1 ,bi1,j=b

µi1,j =
∑

j∈Ji2 ,bi2,j=b

µi2,j

with each summation being zero whenever its index set is empty.

The effect at the state space reduction level of the simplest instance of the law
above is shown below:

+1λ 2λ

+1λ 2λ
_____1λ .

+1λ 2λ
_____λ2 .

a, a,

µ µb, b,

1λ 2λ

P1 P2

a,

P P1 2

b, µ b, µ

74 M. Bernardo

where the two initial states are related by ∼MT but not by ∼MB (unless P1 ∼MB

P2), while the two states reached by the initial state on the left are aggregated
on the right although they are not necessarily equivalent in any sense.

The second characterizing law establishes that ∼MTr allows choices to be
deferred as long as they are related to branches starting with actions having the
same name – as in the ∼MB and ∼MT cases – that are followed by terms having
the same total exit rate. Note that – unlike the ∼MT case – the names and the
total rates of the initial actions of such derivative terms can be different in the
various branches. Formally:∑

i∈I

<a, λi>.
∑

j∈Ji

<bi,j , µi,j>.Pi,j ∼MTr

<a, Σ
k∈I

λk>.
∑
i∈I

∑
j∈Ji

<bi,j,
λi

Σk∈I λk
· µi,j>.Pi,j

whenever:

– I is a finite index set with |I| ≥ 2.
– Ji is a finite index set for all i ∈ I, with the related summation being 0

whenever Ji = ∅.
– For all i1, i2 ∈ I: ∑

j∈Ji1

µi1,j =
∑

j∈Ji2

µi2,j

with each summation being zero whenever its index set is empty.

The effect at the state space reduction level of the simplest instance of the law
above is shown below:

+1λ 2λ

+1λ 2λ
_____1λ .

+1λ 2λ
_____λ2 .

a, a,

µ µb,

1λ 2λ

P1 P2

c,

a,

P P1 2

b, µ µc,

where the two initial states are related by ∼MTr but not by ∼MT (unless b = c).
As before, the two states reached by the initial state on the left are aggregated
on the right although they are not necessarily equivalent in any sense.

It is worth observing that the two laws characterizing ∼MT and ∼MTr, re-
spectively, differ only for functional details, whereas they are identical from the
performance point of view – consistently with the fact that both ∼MT and ∼MTr

rely on the same CTMC-level relation.

6 Aggregation Algorithm for T-Lumpability

For Markovian bisimilarity (resp. ordinary lumpability) it is well known that
a partition refinement algorithm in the style of [7] can be used, which exploits
the fact that the equivalence relation can be characterized as a fixed point of
successively finer relations. In fact, for ∼MB we have:

Towards State Space Reduction 75

∼MB =
⋂

i∈NI

∼MB,i

where ∼MB,0 = P × P and ∼MB,i is defined as follows for i ≥ 1: whenever
(P1, P2) ∈∼MB,i, then for all a ∈ Name and C ∈ P/∼MB,i−1:

rate(P1, a, C) = rate(P2, a, C)
In other words, ∼MB,0 induces a trivial partition with a single equivalence class
that coincides with P , ∼MB,1 refines the previous partition by creating an equiva-
lence class for each set of terms that possess the same total exit rates with respect
to the same action names, and so on.

The minimization algorithm for ∼MB (resp. ordinary lumpability) proceeds
as follows:

1. Build the initial partition with a single class including all the states, then
initialize a list of splitters with this class.

2. Refine the current partition by splitting each of its classes according to the
exit rates towards one of the splitters, then remove this splitter from the list.

3. For each split class, insert into the list of splitters all the resulting subclasses
except for the largest one.

4. If the list of splitters is not empty, go back to the refinement step.

The time complexity is O(m · log n), where n is the number of states and m is
the number of transitions. In order to achieve this complexity, it is necessary to
resort to a splay tree when representing the subclasses arising from the splitting
of a class [5].

Since ∼MT and ∼MTr (resp. T-lumpability) are coarser than ∼MB (resp. or-
dinary lumpability), the algorithm above can be used as a basis to construct
an aggregation algorithm for T-lumpability-based relations. The idea is to in-
clude a preprocessing step at the beginning of the algorithm, which rewrites the
state space in a way that the additional states that can be aggregated as dis-
cussed in Sect. 5 are actually aggregated before the partition refinement process
starts:

0. Preprocess the state space by aggregating the states reachable by a state
that satisfies the conditions associated with the law characterizing ∼MT or
∼MTr.

More precisely, two states s1, s2 can be aggregated in the above preprocessing
step if the following four constraints are satisfied:

(i) There exists at least one state z with outgoing transitions reaching both s1

and s2 that are labeled with the same action name.
(ii) s1 and s2 have the same total exit rate (in the ∼MT case, this constraint

must hold with respect to individual action names).
(iii) There is no state z′ with outgoing transitions reaching only one between

s1 and s2.

76 M. Bernardo

(iv) Given any two states z1, z2 with outgoing transitions reaching both s1 and
s2, for i = 1, 2 the probability with which z1 reaches si is equal to the
probability with which z2 reaches si (in the ∼MT case, this constraint must
hold with respect to individual action names).

Constraints (i) and (ii) are straightforward consequences of the character-
izing laws, whereas constraints (iii) and (iv) describe the context in which T-
lumpability-consistent aggregations can safely take place.

Constraint (iii) avoids aggregations like the following:

s1 s2

a, 1λ a, 2λ

µb, µb,

γc,

+1λ 2λ +1λ 2λ

a, +1λ 2λ γc,

P1 P2

z’

b, µ b, µ_____1λ . _____λ2 .

P1 P2

z’

where z′ would be enabled to reach P1. We observe that in this scenario a correct
aggregation would be the following:

s1 s2

a, 1λ a, 2λ

µb, µb,

γc,
a, +1λ 2λ

+1λ 2λb, µ_____1λ .
+1λ 2λ

γc, 2s’

µb,

P1 P2

z’

P1 P2

z’

b, µ_____λ2 .

This requires a duplicate s′2 of s2 – which in process algebraic terms could be for-
malized as s2+0 – hence it may be in contrast with our objective of reducing the
state space. In general, the suitability of duplicating states depends on the differ-
ence between the numbers of states before and after the duplication/aggregation
process, which is zero in the example above.

Constraint (iv) avoids aggregations in situations like the following:

µb,

z1

a,1

µb,

z2

a,1
s1 s2

a,2 a,2

P1 P2

Here the problem is that the new state resulting from the aggregation of s1 and s2

should reach P1 with probability 1/3 and P2 with probability 2/3 when coming
from z1, while it should reach P1 with probability 2/3 and P2 with probability
1/3 when coming from z2. This is not possible in a memoryless stochastic model
like a CTMC. It could only be achieved by duplicating both s1 and s2 in such
a way that z1 reaches s1,1 and s1,2 while z2 reaches s2,1 and s2,2. At that point
s1,1 and s1,2 could be aggregated into s′1 and s2,1 and s2,2 could be aggregated
into s′2, as shown below:

Towards State Space Reduction 77

z1

1s’

z2

2s’µb,_
3

.2 µb,_
3

.2

P1

µb,_1
3

.

P2

a,3

b, µ_1
3

.

a,3

Also in this case duplication may be in contrast with our objective of reducing
the state space, hence the same remark as for the previous constraint applies.

From the point of view of singling out states that can be aggregated accord-
ing to T-lumpability but not according to ordinary lumpability, constraints (i)
and (ii) are strictly necessary as they are connected to the characterizing laws.
Likewise, constraint (iv) is strictly necessary as it guarantees that the stochas-
tic model obtained after the aggregation process is still a CTMC. By contrast,
constraint (iii) expresses a sufficient but not necessary condition. Consider for
instance the following scenario:

a, 1λ a, 2λ

µb,

s1 s2
γc,

d,δ d,δ

γc,µb,

a, +1λ 2λ

+1λ 2λ +1λ 2λ

γc,µb,

P1 P2

_____1λ . _____λ2 .

P1 P2

d, d,δ δ
z’1 z’2

Constraint (iii) is violated because there is a state (z′1) reaching only s1 and
another state (z′2) reaching only s2. Nevertheless, the aggregation shown above
is consistent with T-lumpability.

The preprocessing step to be applied before the refinement process of the min-
imization algorithm for ∼MB (resp. ordinary lumpability) can be implemented
through a depth-first visit of the state space, provided that both the reachabil-
ity relation and its inverse relation are represented in the labeled multitransition
system to be reduced. In other words, every state has to encode not only its
outgoing transitions, but also its incoming transitions. During the visit, for each
state we check whether some of its derivative states satisfy constraints (i) and
(ii). If this is the case, we check whether constraints (iii) and (iv) are satisfied as
well by those derivative states (here inverse reachability is needed). If so, those
derivative states are aggregated into a new state according to the characterizing
law for the equivalence relation of interest (∼MT or ∼MTr). The time complexity
of the visit is O(n + m), where n is the number of states and m is the number
of transitions of the labeled multitransition system.

If we go back to the incremental service example of Sect. 2, we see that the
preprocessing step trasforms [[Eager]] into [[Lazy]], thus achieving a quadratic
reduction of the state space size. As usual, the other steps of the resulting ag-
gregation algorithm come into play in case of symmetries. Suppose that at the
Italian restaurants there are h ≥ 2 independent clients, each identical to the

78 M. Bernardo

eager client. Then the description of the whole set of clients will have O(αh)
states for some α > 1, while the aggregated state space will have O(h) states at
the end of the partition refinement process.

In the case of identical clients using incremental services, we observe that the
T-lumpability-consistent aggregation algorithm has not only the effect of further
reducing the size of the state space with respect to the ordinary-lumpability-
consistent minimization algorithm. In fact, if applied to each client individually
before composing the clients in parallel, it speeds up the execution of the last
application of the algorithm itself to the whole system.

7 Conclusion

We have exploited the characterizing laws of Markovian testing and trace equiv-
alences to enhance the potential for exact state space reduction of ordinary
lumpability. Moreover, we have singled out a class of systems – those providing
incremental services – to which the resulting algorithm can be profitably applied.

Concerning future work, we would like to develop some heuristics that help
deciding whether and when it is convenient to perform local state duplications
in order to satisfy constraints (iii) and (iv) in situations like those in Sect. 6.

Furthermore, we would like to investigate whether the algorithm for verifying
classical testing equivalence proposed in [4] – which reduces testing equivalence
verification over labeled transition systems to the verification of a generalization
of bisimilarity over acceptance graphs – can be of help in order to strengthen
our T-lumpability-consistent aggregation algorithm.

References

1. Bernardo, M.: “Non-Bisimulation-Based Markovian Behavioral Equivalences”. Jour-
nal of Logic and Algebraic Programming 72, 3–49 (2007)

2. Bernardo, M.: A Survey of Markovian Behavioral Equivalences. In: Bernardo, M.,
Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 180–219. Springer, Heidelberg
(2007)

3. Buchholz, P.: Exact and Ordinary Lumpability in Finite Markov Chains. Journal of
Applied Probability 31, 59–75 (1994)

4. Cleaveland, R., Hennessy, M.: Testing Equivalence as a Bisimulation Equivalence.
Formal Aspects of Computing 5, 1–20 (1993)

5. Derisavi, S., Hermanns, H., Sanders, W.H.: Optimal State-Space Lumping in Markov
Chains. Information Processing Letters 87, 309–315 (2003)

6. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge Uni-
versity Press, Cambridge (1996)

7. Paige, R., Tarjan, R.E.: Three Partition Refinement Algorithms. SIAM Journal on
Computing 16, 973–989 (1987)

8. Wolf, V., Baier, C., Majster-Cederbaum, M.: Trace Machines for Observing
Continuous-Time Markov Chains. In: Proc.of the 3rd Int. Workshop on Quanti-
tative Aspects of Programming Languages (QAPL 2005), Edinburgh, UK. ENTCS,
vol. 153(2), pp. 259–277 (2005)

A Ticking Clock: Performance Analysis of a

Circadian Rhythm with Stochastic Process
Algebra

Jeremy T. Bradley

Department of Computing, Imperial College London
180 Queen’s Gate, London SW7 2BZ, United Kingdom

jb@doc.ic.ac.uk

Abstract. We apply performance analysis techniques to a biological
modelling problem, that of capturing and reproducing the Circadian
rhythm. A Circadian rhythm provides cells with a clock by which to
regulate their behaviour. We consider two distinct stochastic models of
the Circadian rhythm – one unbounded and the other bounded. We con-
sider a fluid approximation of the models, and, by conversion to a set
of ordinary differential equations, we are able to reproduce the correct
rhythm. We show that with a bounded model, the clock phase can be
affected by modifying the ability to manufacture some proteins.

1 Introduction

Many biological systems make use of a Circadian clock to keep track of the pas-
sage of time. The Circadian clock has evolved to create periodic concentrations
of chemicals, in such a way that cells can regulate their behaviour according to
the time of day or season of the year [1,2].

The basic Circadian mechanism uses a two gene-regulated positive and nega-
tive feedback mechanism to achieve regular periodic fluctuations in the concen-
tration of a protein within the cell. The exact concentration of protein provides
the cell with a means of determining the time of day.

We compare modelling techniques from different modelling paradigms, stochas-
tic π-calculus [3] and PEPA [4], to generate two distinct Circadian clock models.
The stochastic π-calculus model has an unbounded state-space and we suggest a
systematic approach for generating an equivalent but bounded PEPA model. A
bounded process model has the advantage of generating a finite continuous-time
Markov chain which can be analysed using standard CTMC techniques. Although
in this case, we do not use this aspect of the finite model, we make use of a further
feature of the finite PEPA model that allows us to restrict the total amount of fluc-
tuating protein that is capable of being made. This allows us to simulate resource
starvation and observe its effect on the Circadian rhythm.

Recent innovations in the analysis of stochastic process algebras allow massive
stochastic state spaces to be analysed. We take advantage of a fluid approxima-
tion for both stochastic π-calculus [3] and PEPA [5,6] to generate sets of ordinary

N. Thomas and C. Juiz (Eds.): EPEW 2008, LNCS 5261, pp. 79–94, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

80 J.T. Bradley

differential equations which capture the time-varying concentrations of chemicals
in the system.

In this paper, we introduce the versions of PEPA and stochastic π-calculus
being used. We describe the mechanism behind the Circadian clock in Section 2
and present the process models in Section 3. We discuss solutions of the resulting
ODEs from the process models in Section 4.

2 Circadian Clock

Figure 1 (as used in [1]) shows a biological graphical description of a Circadian
clock with two DNA molecules for proteins A and R interacting through their
respective mRNA molecules.

D′
RDRD′

ADA

AA

AA

A R

C

γC

δA

δA δR

δMA δMR

βA βR

MA MR

αA α′
A αR α′

R

θA

γA

θR

γR

Fig. 1. The biological network for the Circadian clock

In the diagram, there are two DNA molecules, DA and DR, which describe
proteins A and R. These DNA molecules generate mRNA molecules which in
turn generate their respective proteins. High concentrations of the R protein
absorb the A molecules and therefore R acts as a repressor for A. In the absence
of A, R will degrade naturally.

A also acts as an activator for the generation of mRNA for both A and R
molecules. An A protein can bind with either DNA strand to enable generation
of mRNA for A or R at a much accelerated rate, compared to the DNA being
unbound. Thus, we have several opportunities for constructive and destructive

A Ticking Clock: Performance Analysis of a Circadian Rhythm 81

A

DA

DR

ADA MA

ADR MR R

C

bindC

bindA

bindR

γR

γA

θA

θR

αA

αR

αR′ βR δA

αA′ βA

γC

δMR δR

δMA

δA

Fig. 2. An equivalent unbounded Petri net model of the gene/protein network

feedback within the system. The result is that the concentration of A should
oscillate in anti-phase to the concentration of R. The spikes in the concentration
of A act as the ticks of a clock for an organism.

For computer science audience, we derive a stochastic Petri net equivalent
system for Figure 1, shown in Figure 2. We use Figure 2 to create both stochastic
π-calculus and PEPA models of the gene network.

3 Stochastic Process Models

3.1 Stochastic π-Calculus

π-calculus [7] was designed to be a data-oriented extension of CCS [8] and sto-
chastic π-calculus was, in turn, a timed extension of that. The original stochastic
π-calculus, as defined by Priami [3], has the following syntax:

P ::= 0 | (π, r).P | (νx)P | [x = y]P | P + P | (P | P) | P (y1, . . . , yn)

where π may be either x(y) representing data y being input on channel x or
x̄(y) which represents data y being output on channel x or τ representing a
silent action.

In this system, P denotes a system component, which can send data (or
names) along channels. That data can be compared and conditional execution

82 J.T. Bradley

can be expressed. We will not explain the full language here and the reader is
directed to [3] for a complete explanation of all the operators above.

For the purposes of this paper, we use a simpler subset of the calculus as the
full breadth of stochastic π-calculus is not needed for the Circadian clock model.

P ::= 0 | πr.P | P + P | (P | P) | A

The central construction πr.P denotes a component which can undertake a π
action at rate r to evolve into a component P . The 0 component represents a
system that has stopped evolving and plays no further part in the operation of
the system. We will have no need for the restriction operator, νx, the comparison
operator, [x = y] or the explicit concept of channels.

Prefix. The operation πr.P expresses the ability of a component to perform
π-action at rate r. The rate, r, samples from an exponential distribution
and determines how long the action will take. The action π above can either
be an emitted action, a, or a received coaction, ā, or a silent τ action. Silent
actions occur when actions and coactions from parallel processes cooperate.

Choice. This is encoded using by P1+P2, which indicates that either the process
P1 or P2 can proceed. If the possibility P1 is chosen then the process P2 is
discarded, and vice-versa. In the stochastic π-calculus the first process to
complete its action determines which process is selected to proceed; this is
known as a race condition.

Parallel process. A parallel process, P1 | P2, runs two processes P1 and P2

in parallel. Actions and coactions in P1 and P2 cooperate to produce silent
actions. In the original paper of stochastic π-calculus Priami also dictates
that the rate of a cooperating action should inherit a function of the rates of
the constituent action and coaction. In subsequent versions, the rate of the
resulting cooperating τ directly inherits the rate of the constituent actions.

Constant. We assign names to behaviour associated with components. Con-
stants are components whose meaning is given by a defining equation. The
notation for this is X

def= E. The name X is in scope in the expression on the
right hand side meaning that, for example, X

def= πr.X performs π at rate r
forever.

3.2 PEPA

PEPA [4] as a performance modelling formalism has been used to study a
wide variety of systems: multimedia applications [9], mobile phone usage [10],
GRID scheduling [11], production cell efficiency [12] and web-server clusters [13]
amongst others. The definitive reference for the language is [4].

As in all process algebras, systems are represented in PEPA as the composition
of components which undertake actions. In PEPA the actions are assumed to
have a duration, or delay. Thus the expression (α, r).P denotes a component
which can undertake an α action at rate r to evolve into a component P . Here
α ∈ A where A is the set of action types. The rate r is interpreted as a random
delay which samples from an exponential random variable with parameter, r.

A Ticking Clock: Performance Analysis of a Circadian Rhythm 83

PEPA has a small set of combinators, allowing system descriptions to be built
up as the concurrent execution and interaction of simple sequential components.
The syntax of the type of PEPA model considered in this paper may be formally
specified using the following grammar:

S ::= (α, r).S | S + S | CS

P ::= P ��
L

P | P/L | C

where S denotes a sequential component and P denotes a model component which
executes in parallel. C stands for a constant which denotes either a sequential
component or a model component as introduced by a definition. CS stands for
constants which denote sequential components. The effect of this syntactic sep-
aration between these types of constants is to constrain legal PEPA components
to be cooperations of sequential processes.

More information and structured operational semantics on PEPA can be found
in [4]. A brief discussion of the basic PEPA operators is given below:

Prefix. The basic mechanism for describing the behaviour of a system with
a PEPA model is to give a component a designated first action using the
prefix combinator, denoted by a full stop, which was introduced above. As
explained, (α, r).P carries out an α action with rate r, and it subsequently
behaves as P .

Choice. The component P + Q represents a system which may behave either
as P or as Q. The activities of both P and Q are enabled. The first activ-
ity to complete distinguishes one of them: the other is discarded. The sys-
tem will behave as the derivative resulting from the evolution of the chosen
component.

Constant. It is convenient to be able to assign names to patterns of behaviour
associated with components. Constants are components whose meaning is
given by a defining equation. The notation for this is X

def= E. The name X
is in scope in the expression on the right hand side meaning that, for exam-
ple, X

def= (α, r).X performs α at rate r forever.
Hiding. The possibility to abstract away some aspects of a component’s be-

haviour is provided by the hiding operator, denoted P/L. Here, the set L
identifies those activities which are to be considered internal or private to
the component and which will appear as the unknown type τ .

Cooperation. We write P ��
L

Q to denote cooperation between P and Q over L.
The set which is used as the subscript to the cooperation symbol, the co-
operation set L, determines those activities on which the components are
forced to synchronise. For action types not in L, the components proceed in-
dependently and concurrently with their enabled activities. We write P ‖ Q
as an abbreviation for P ��

L
Q when L is empty. Further, particularly useful

in fluid analysis is, P [n] which is shorthand for the parallel cooperation of n
P -components, P || · · · || P︸ ︷︷ ︸

n

.

84 J.T. Bradley

In process cooperation, if a component enables an activity whose action type
is in the cooperation set it will not be able to proceed with that activity until
the other component also enables an activity of that type. The two components
then proceed together to complete the shared activity. Once enabled, the rate of a
shared activity has to be altered to reflect the slower component in a cooperation.

In some cases, when a shared activity is known to be completely dependent
only on one component in the cooperation, then the other component will be
made passive with respect to that activity. This means that the rate of the
activity is left unspecified (denoted �) and is determined upon cooperation, by
the rate of the activity in the other component. All passive actions must be
synchronised in the final model.

Within the cooperation framework, PEPA respects the definition of bounded
capacity: that is, a component cannot be made to perform an activity faster by
cooperation, so the rate of a shared activity is the minimum of the apparent
rates of the activity in the cooperating components.

The definition of the derivative set of a component will be needed later in the
paper. The derivative set, ds(C), is the set of states that can be reached from a
the state C. In the case, where C is a state in a strongly connected sequential
component, ds(C) represents the state space of that component.

Overview of ODE Generation. In this section, we give a brief summary of
how differential equations are generated for PEPA in particular. Further details
can be found in [5,6]. Consider a PEPA model made up of component types Ci,
such that the system equation has the form:

C1[n1] ��
L

C2[n2] ��
L

· · · ��
L

Cm[nm] (1)

where C[n] is the parallel composition of n C-components. Take Cij to be the jth
derivative state of component Ci. The cooperation set L is made up of common
actions to Ci for 1 ≤ i ≤ m.

Fluid analysis approximates the number of derivatives of each component that
are present in the system at a time t with a set of differential equations. Now a
numerical vector form for such a model would consist of (vij : 1 ≤ i ≤ m, 1 ≤
j ≤ |ds(Ci)|) where vij is the number of Cij components in the system at a
given time. A set of coupled differential equations can be created to describe the
time-variation of vij as follows:

dvij (t)
dt

= −
∑

k : Cij

(a,·)
−−−→Cik

rate of a-action leaving Cij

+
∑

k : Cik

(b,·)
−−−→Cij

rate of b-action leaving Cik (2)

A very similar technique exists for creating fluid models of stochastic π-calculus
and details can be found in [14].

A Ticking Clock: Performance Analysis of a Circadian Rhythm 85

3.3 Modelling Differences

CCS versus CSP Communication. The distinction between the communi-
cation formalisms in stochastic π-calculus and PEPA is inherited from CCS [8]
and CSP [15] respectively, and gives rise to an important difference in the way
biological models are created in many cases (although, not as it happens, this
one).

Stochastic π-Calculus has a binary communication model and, if no restriction
is used, can initiate communication between any two processes in a system arbi-
trarily, if they enable the appropriate action–coaction pair. By contrast, PEPA
uses an n-way communication model which requires all processes producing an
a-action to synchronise, if specified in the appropriate cooperation set. This will
often mean that PEPA models would need a mediator component to act as con-
duit or network for the communication between a group of components in a
stochastic π-calculus style.

(P || · · · || P) ��
L

Mediator

In the event, there is no communication within groups of proteins, mRNA or
DNA so no such extra network components are required here.

Parallel Components. An equally important distinction between stochastic
π-calculus and PEPA is that stochastic π-calculus allows dynamic component
generation whereas PEPA has a static cooperation specification. This means that
a stochastic π-calculus model can spawn and kill processes to increase or reduce
a population. Conversely, PEPA models have to have a predefined population in
a cooperation structure that is going to be appropriate for the duration on the
model’s lifecycle.

In the Circadian clock model, the major difference between modelling in sto-
chastic π-calculus and PEPA is the way in which new molecules are generated. In
stochastic π-calculus, it is succinct to have new molecules spontaneously appear
in parallel out of individual molecule descriptions, as in:

DA
def= ταA .(DA | MA) (3)

Here, after an exponential delay at rate αA, a DA molecule becomes a DA and
an MA molecule. In effect, this means that the DA molecule remains intact and
an MA molecule is spontaneously created.

In contrast, PEPA has a notion of a static cooperation structure which encour-
ages the creation of independent molecule lifecycles which capture an individual
molecule’s state, even if one of those states is just the potential to create the
molecule. The PEPA equivalent of Equation (3) is given by:

DA
def= (transA, αA).DA

M ′
A

def= (transA,�).MA (4)

86 J.T. Bradley

Here the state M ′
A represents the concept of there being sufficient resources in

the system that, when driven by a transA action from the DNA molecule DA,
an MA molecule is instantiated.

This single modelling difference between the formalisms has large implications.
To start with the stochastic π-calculus model can grow unboundedly, generating
an indefinite number of MA molecules, in this example. Whereas in the PEPA
model, we would have to pre-specify the number of MA molecules that the system
was capable of creating using the following system equation:

DA ��
{transA}

(M ′
A || · · · || M ′

A)︸ ︷︷ ︸
n

Such a system would have the capacity to generate n molecules of MA and no
more.

As to which approach is appropriate, that will depend on the modelling situ-
ation and the facets of the system that the modeller is trying to capture.

The unbounded nature of the stochastic π-calculus model generates an infinite
stochastic state space, which would make probabilistic model checking, in all
but the most fortunate of cases, impossible. So if tools such as PRISM, PEPA
Workbench or ETMCC are to be employed to perform probabilistic analysis
on biological systems, it would seem that the PEPA style of modelling is more
appropriate.

It should be noted though that if explicit state-space representation techniques
are used by the tool, then even if a bounded and finite model is generated, only
a very small version will be capable of being analysed as the state space quickly
becomes unmanageable.

The only practical way to analyse such largemodels is through continuous state-
space representation via numerical ODE solution or stochastic simulation. As yet
there is no model checking framework in which these techniques can be used.

Predefined Synchronisation Rate. Again comparing the same snippets of
process model from Equation (3) and (4), we note that the rate of delay prior
to molecule generation is defined as αA. As discussed earlier this process is a
succinct way of representing a synchronisation between the environment (the
amino acids that are the building blocks of proteins and mRNA) and the DNA
molecule. It could be said that as there was no explicit definition of how the indi-
vidual processes participated in the synchronisation, that this does not produce
a composable model. However, a counter argument would quite reasonably sug-
gest that the action was τ -action anyway and not observable by other processes
and that the above example was an abstraction of underlying cooperation.

3.4 Stochastic π-Calculus Model

Based on our description of Section 2, we construct a stochastic π-calculus model
of the Circadian clock. In the system below, DA and DR represent the DNA

A Ticking Clock: Performance Analysis of a Circadian Rhythm 87

molecules for the proteins A and R. Similarly, MA and MR represent the mRNA
molecules for the proteins A and R.

DA
def= bindAγA

.DA′ + ταA
.(DA | MA)

DA′
def= τθA

.(DA | A) + ταA′ .(DA′ | MA)
DR

def= bindRγR
.DR′ + ταR

.(DR | MR)
DR′

def= τθR
.(DR | A) + ταR′ .(DR′ | MR)

MA
def= τδMA

.0 + τβA
.(MA | A)

MR
def= τδMR

.0 + τβR
.(MR | R)

A
def= bindAγA

.0 + bindRγR
.0 + bindCγC

.0 + τδA
.0

R
def= bindCγC

.C + τδR
.0

C
def= τδA

.R

Below are the ODEs as generated by applying the systematic transformation
of [14] to the stochastic π-calculus model of the Circadian clock, above. The
term [X] represents the time-varying concentration of element X .

d
dt

[DA] = θA[DA′] − γA[DA][A]

d
dt

[DA′] = −θA[DA′] + γA[DA][A]

d
dt

[DR] = θR[DR′] − γR[DR][A]

d
dt

[DR′] = −θR[DR′] + γR[DR][A]

d
dt

[MA] = −δMA[MA] + αA[DA] + αA′ [DA′]

d
dt

[MR] = −δMR[MR] + αR[DR] + αR′ [DR′]

d
dt

[A] = βA[MA] + θA[DA′] + θR[DR′]

− γA[DA][A] − γR[DR][A] − γC [A][R] − δA[A]
d
dt

[R] = βR[MR] + δA[C] − γC [A][R] − δR[R]

d
dt

[C] = −δA[C] + γC [A][R]

3.5 PEPA Model

The following is the PEPA model of the Circadian clock. A distinct model from
the stochastic π-calculus version and a larger model description, necessary to
capture a bounded model. Where complex molecules are created, for instance
between the DNA molecule DA and the protein A, we create explicit versions of

88 J.T. Bradley

each ADA and ADA , since we cannot have a single component representing the
complex as we do in the stochastic π-calculus model.

DA
def= (bindADA , γA).ADA + (mkMA, αA).DA

ADA
def= (unbindADA , θA).DA + (mkMA, αA′).ADA

DR
def= (bindADR , γR).ADR + (mkMR, αR).DR

ADR
def= (unbindADR , θR).DR + (mkMR, αR′).ADR

M ′
A

def= (mkMA,�).MA

MA
def= (decayMA , δMA).M ′

A + (mkA, βA).MA

M ′
R

def= (mkMR,�).MR

MR
def= (decayMR , δMR).M ′

R + (mkR, βR).MR

A′ def= (mkA,�).A
A

def= (bindADA , γA).ADA + (bindADR , γR).ADR + (bindAR, γC).AC

+ (decayA, δA).A′

ADA

def= (unbindADA ,�).A
ADR

def= (unbindADR ,�).A
AC

def= (unbindAR,�).A′

R′ def= (mkR,�).R
R

def= (bindAR, γC).C + (decayR, δR).R′

C
def= (unbindAR, δA).R

The different process definitions represent the different states of the molecules
in the system. The states M ′

A, M ′
R, A′ and R′ represent potential to create the

molecules MA, MR, A and R. The system would start in the state with the
potential to create nX molecules of X for X ∈ {MA, MR, A, R}.

Circadian def= (DA || DR) ��
L

((M ′
A[nMA] || M ′

R[nMR]) ��
M

(A′[nA] ��
N

R′[nR]))
L = {bindADA , unbindADA , bindADR , unbindADR , mkMA, mkMR}

M = {mkA, mkR}
N = {bindAR, unbindAR}

In the stochastic π-calculus model, molecules of A, R as well as mRNA degraded
and disappeared from the system. There is a closed-system assumption in the
PEPA model, that degrading proteins break down into their constituent amino
acids, which can then be used to form new molecules of A, R and mRNA.

Note that in the differential equations below, we deliberately translated active
cooperation between pairs of components using a mass-action semantics, which
is physically appropriate for the model. This should technically involve using a
different PEPA cooperation operator, or a user-defined rate function; this issue
has been addressed in subsequent biologically oriented versions of PEPA [16].
The passive cooperation is translated using the methodology from [6] where, as

A Ticking Clock: Performance Analysis of a Circadian Rhythm 89

a feature of the model, the passive molecule is always assumed to be present.
This prevents numerical difficulties with indicator functions.

d
dt

[DA] = θA[DA] − γA[DA][A]

d
dt

[ADA] = −θA[DA] + γA[DA][A]

d
dt

[DR] = θR[DR] − γR[DR][A]

d
dt

[ADR] = −θR[DR] + γR[DR][A]

d
dt

[M ′

A] = δMA[MA] − αA[DA] − αA′ [ADA]

d
dt

[MA] = −δMA[MA] + αA[DA] + αA′ [DA′]

d
dt

[M ′

R] = δMR[MR] − αR[DR] − αR′ [ADR]

d
dt

[MR] = −δMR[MR] + αR[DR] + αR′ [DR′]

d
dt

[A′] = δA[C] − βA[MA]

d
dt

[A] = βA[MA] + θA[ADA] + θR[ADR]

− γA[DA][A] − γR[DR][A] − γC [A][R] − δA[A]
d
dt

[ADA
] = −θA[ADA] + γA[DA][A]

d
dt

[ADR
] = −θR[ADR] + γR[DR][A]

d
dt

[AC] = −δA[C] + γC [A][R]

d
dt

[R′] = −βR[MR] + δR[R]

d
dt

[R] = βR[MR] + δA[C] − γC [A][R] − δR[R]

d
dt

[C] = −δA[C] + γC [A][R]

3.6 Parameters

The initial conditions and parameter values for the Circadian clock models are
taken directly from [1]: DA = DR = 1 mol , D′

A = D′
R = MA = MR = A =

R = C = 0, which require that the cell has a single copy of the activator and
repressor genes: DA + D′

A = 1 mol and DR + D′
R = 1 mol .

90 J.T. Bradley

αA = 50h−1

αA′ = 500h−1

αR = 0.01h−1

αR′ = 50h−1

βA = 50h−1

βR = 5h−1

δMA = 10h−1

δMR = 0.5h−1

δA = 1h−1

δR = 0.2h−1

γA = 1mol−1hr−1

γR = 1mol−1hr−1

γC = 2mol−1hr−1

θA = 50h−1

θR = 100h−1

4 Evaluation

In this section we evaluate the results of analysing the stochastic π-calculus and
PEPA models against the differential equations from [1] and also against each
other. To generate the differential equation models from the process algebra
descriptions we use the automated techniques for PEPA [5,6] and stochastic
π-calculus [14], outlined in Section 3.2.

In Figure 3, we see the solutions of the differential equations for the original
Circadian clock model as reproduced from Vilar et al. [1]. We note that their is
an initial surge of A to about 1700 mol followed by periodic peeks at 1400 mol
every 24 hours.

In Figure 4, we show both the concentration on A and of the repressor R
as extracted from the stochastic π-calculus model. The basic features of the
activator protein as identified from Figure 3 are present, and indeed we know this
to be identical to the results of Figure 3 as the ODEs generated for Equation (5)
are identical to the model ODEs that appeared in [1]. We note that the R
repressor acts almost completely out of phase with the A protein as would be
expected.

Fig. 3. Concentration of A protein varying against time from the original model [1]

A Ticking Clock: Performance Analysis of a Circadian Rhythm 91

 0

 500

 1000

 1500

 2000

 0 20 40 60 80 100

N
um

be
r

of
 m

ol
ec

ul
es

Time, t

A, activator (pi)
R, repressor (pi)

Fig. 4. Concentration of A activator (peaks 1,3,5,7) and R repressor varying against
time from the stochastic π-calculus model

 0

 500

 1000

 1500

 2000

 0 20 40 60 80 100

N
um

be
r

of
 m

ol
ec

ul
es

Time, t

A, activator (pi)
R, repressor (pi)

A, activator (PEPA)
R, repressor (PEPA)

Fig. 5. Concentration of A activator and R repressor varying against time from the
stochastic π-calculus (lines) and PEPA (points) model

Figure 4 shows the results of the PEPA solution superposed on the results
from the stochastic π-calculus model. The solutions overlay each other, despite
the fact that the models differ and the sets of differential equations differ.

92 J.T. Bradley

 0

 500

 1000

 1500

 2000

 0 20 40 60 80 100

N
um

be
r

of
 m

ol
ec

ul
es

Time, t

A, A’=1900
R, A’=1900

Fig. 6. Concentration of A activator (peaks 1,3,5,7) and R repressor varying against
time from the PEPA model with restricted A and R facility

We now take advantage of the fact that we have a bounded model in the PEPA
version of the Circadian clock that we have checked numerically against the other
models. With Figure 4, we consider a scenario where the ability to construct A
activator was in some way limited, perhaps through resource starvation of the
building-block amino acids. Using the bounded PEPA model, we restrict the
ability to make A protein to 1900 mol and although this is still higher than the
peak of A production in the unconstrained model of Figure 4, we see a distinct
quantitative and qualitative change in the concentrations of both A and R. The
periodic peak of A drops by about 400 mol , and the periodic peak of R drops
similarly by 200 mol . Additionally, the period of oscillation of A has dropped by
about an hour. It would be very interesting to see if this could be replicated in
a biological scenario.

5 Conclusion and Future Work

We have generated and solved the ODE systems for both stochastic π-calculus
and PEPA models and have reproduced the same results as obtained by Vilar et
al. [1], in both cases. Despite bounding the state space of the PEPA model and
generating distinct sets of differential equations, we obtained identical results
for both stochastic π-calculus and PEPA models. We aim to show that this cor-
responds to the state-space truncation proposed by Degasperi and Gilmore [17]
and that the probability of reaching the truncated states during a normal execu-
tion of the system is negligible. This would provide a quantitative justification
for the truncation.

A Ticking Clock: Performance Analysis of a Circadian Rhythm 93

We showed that truncating the model not only provides a finite state-space
(as expected) but also gives us the capacity to test the system in a restricted
resource scenario. We note that restricting the capacity of the PEPA model
to make key proteins upsets the phase of the Circadian rhythm, but does not
destroy it altogether.

We also intend to study further how newer modelling formalisms, designed
specifically for biological applications, such as Bio-PEPA [16] could express such
a model and capture resource restriction as examined here.

Acknowledgements

The author would like to acknowledge the help of Thomas Thorne whose MSc
report contributed valuable work to previous versions of this paper. The author
would also like to thank Stephen Gilmore for providing significant insight into
state-space truncation approximation techniques.

References

1. Vilar, J.M.G., Kueh, H.Y., Barkai, N., Leibler, S.: Mechanisms of noise-resistance
in genetic oscillators. PNAS 99, 5988–5992 (2002)

2. Barkai, N., Leibler, S.: Biological rhythms: Circadian clocks limited by noise. Na-
ture 403, 267–268 (2000)

3. Priami, C.: A stochastic π-calculus. In: Gilmore, S., Hillston, J. (eds.) Process
Algebra and Performance Modelling Workshop, June 1995. The Computer Journal,
vol. 38(7), pp. 578–589. CEPIS, Edinburgh (1995)

4. Hillston, J.: A Compositional Approach to Performance Modelling. Distinguished
Dissertations in Computer Science, vol. 12. Cambridge University Press, Cambridge
(1996)

5. Hillston, J.: Fluid flow approximation of PEPA models. In: QEST 2005, Proceed-
ings of the 2nd International Conference on Quantitative Evaluation of Systems,
Torino, September 2005, pp. 33–42. IEEE Computer Society Press, Los Alamitos
(2005)

6. Bradley, J.T., Gilmore, S.T., Hillston, J.: Analysing distributed internet worm at-
tacks using continuous state-space approximation of process algebra models. Jour-
nal of Computer and System Sciences (in press, July 2007)

7. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes. Information and
Computation 100, 1–40 (1992)

8. Milner, R. (ed.): A Calculus of Communication Systems. LNCS, vol. 92. Springer,
Heidelberg (1980)

9. Bowman, H., Bryans, J.W., Derrick, J.: Analysis of a multimedia stream using
stochastic process algebras. The Computer Journal 44(4), 230–245 (2001)

10. Fourneau, J.M., Kloul, L., Valois, F.: Performance modelling of hierarchical cellular
networks using PEPA. Performance Evaluation 50, 83–99 (2002)

11. Thomas, N., Bradley, J.T., Knottenbelt, W.J.: Stochastic analysis of scheduling
strategies in a GRID-based resource model. IEE Software Engineering 151, 232–
239 (2004)

94 J.T. Bradley

12. Holton, D.R.W.: A PEPA specification of an industrial production cell. In: Gilmore,
S., Hillston, J. (eds.) PAPM 1995, Proceedings of the 3rd International Workshop
on Process Algebra and Performance Modelling, Edinburgh, June 1995. The Com-
puter Journal, vol. 38(7), pp. 542–551. OUP (1995)

13. Bradley, J.T., Dingle, N.J., Gilmore, S.T., Knottenbelt, W.J.: Derivation of
passage-time densities in PEPA models using ipc: the Imperial PEPA Compiler.
In: Kotsis, G. (ed.) MASCOTS 2003, Proceedings of the 11th IEEE/ACM In-
ternational Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunications Systems, pp. 344–351. IEEE Computer Society Press, Los
Alamitos (2003)

14. Cardelli, L.: On process rate semantics. Theoretical Computer Science 391, 190–215
(2008)

15. Hoare, C.A.R.: Communicating sequential processes. Communications of the
ACM 21, 666–677 (1978)

16. Ciocchetta, F., Hillston, J.: Bio-PEPA: An extension of the process algebra PEPA
for biochemical networks. In: Cannata, N., Merelli, E. (eds.) FBTC 2007, Proc. of
the From Biology To Concurrency and Back, July 2008. Electronic Notes in The-
oretical Computer Science, vol. 194(3), pp. 103–117. Elsevier, Amsterdam (2008)

17. Degasperi, A., Gilmore, S.T.: Sensitivity analysis of stochastic models of bistable
biochemical reactions. In: Bernardo, M., et al. (eds.) SFM 2008. LNCS, vol. 5016,
pp. 1–20. Springer, Heidelberg (2008)

Assembly Code Analysis Using Stochastic

Process Algebra

Lamia Djoudi and Lëıla Kloul

PRiSM, Université de Versailles, 45, Av. des Etats-Unis, 78000 Versailles
{ladj,kle}@prism.uvsq.fr

Abstract. Currently compilers contain a large number of optimisations
which are based on a set of heuristics that are not guaranteed to be ef-
fective to improve the performance metrics. In this paper, we propose a
strategy which allows us the analysis and the choice of the best optimi-
sation, by focusing on the hot part of an assembly code. In our approach,
for each optimisation applied, the code of the hot loop is extracted and
its dependency graph generated. Finally, and in order to select the best
optimisation, the generated graphs are analytically analysed using sto-
chastic process algebra.

Keywords: Assembly code, Code optimisation, Data dependencies
graph, Stochastic process algebra, Performance analysis.

1 Introduction

Due to complex interactions between hardware mechanisms and software dy-
namic behaviours, scientific code optimisation at compile time is an extremely
difficult task. State-of-the-art compilers are still challenged to achieve high per-
formance independently from runtime or micro-architectural parameters. As re-
gard the application, the knowledge of its behaviour implies a serious effort and
a high degree of expertise.

Currently compilers contain a large number of optimisations which are based
on a set of heuristics that are not guaranteed to be effective to improve the
performance metrics. Achieving high performance relies heavily on the ability of
the compiler to exploit the underlying architecture and the quality of the code it
produces. This requires a full understanding and a full control of the application
behaviour the compiler has when compiling the application to provide a precise
diagnostic about the success or failure of an optimisation if applied. It also re-
quires the ability to transmit to the compiler certain architecture characteristics
to make it choose the right optimisation to apply.

Before starting to optimise an application, the programmer must identify the
main factors limiting the performances of its application. For that, two types of
code analysis techniques can be used: static and dynamic techniques.

Static techniques extract opportune information from the program analysis
(source, assembly or binary code). These techniques are usually faster than
dynamic analysis but less precise.

N. Thomas and C. Juiz (Eds.): EPEW 2008, LNCS 5261, pp. 95–109, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

96 L. Djoudi and L. Kloul

Dynamic techniques require a dynamic execution of the program (real exe-
cution or simulation). Profiling a program consists in collecting opportune in-
formation during its execution in order to guide efficient optimisations (dead
code elimination, prefetching, instruction scheduling, memory layout transfor-
mation, . . .). These optimisations can be applied either by transforming the
initial source code or the assembly code, or by re-compiling it guided by the
collected information. Several dynamic techniques can be used, among which we
have instrumentation and sampling.

– Instrumentation inserts instructions to collect information. Several instru-
mentation methods exist: source modification, compiler injected instrumen-
tation, binary rewriting to get an instrumented version of an executable,
and binary translation at runtime. Instrumentation adds code to increment
counters at entry/exit function, reading hardware performance counters, or
even simulate hardware to get synthetic event counts. The instrumentation
runtime can dramatically increase the execution time such that time mea-
surements become useless. It may also result in a huge code. Moreover it
does not help in finding the bottlenecks if there are any. MAQAO[4] and
EEL[10] are examples of tools which are based on the instrumentation.

– Sampling consists in taking measuring points during short time intervals.
The validity of the results depends on the choice of the measures and their
duration. Prof [11] and GProf [7] are examples of sampling-based tools.

Obtaining dynamic information on the behaviour of a program is relatively com-
plex. In one hand the application size is increased and on the other hand the
number, the complexity and the interactions of the transformations (optimisa-
tions) to apply are important. Moreover the validity of these information depends
on the input parameters of the program.

However certain information like the execution time or the iteration number
can be obtained only dynamically and they have an impact on the effectiveness
of the optimisations. As a large application may execute for hours and sometimes
even days, if a developer is focusing on the implementation or the tuning of a
key computation, it will be far more efficient and less cumbersome to run just
the key computation, isolated from the rest of the program.

In this paper, we propose a strategy which allows the analysis and the choice
of the best transformation, by focusing on the hot part of a code. It is well known
that loop optimisation is a critical part in the compiler optimisation chain. A
routinely stated rule is that 90% of the execution time is spent in 10% of the
code. The main characteristic of our strategy is the assembly code isolation.
We isolate the hot loop from a large application for the purpose of performance
tuning. We are interested in the assembly code because it is the natural place
to observe performance. It is close enough to the hardware and it is possible to
check the job done by the compiler.

Our approach is based on: (1) a static analysis of the code to predict the
data dependency, (2) a dynamic analysis to select the hot loop in code, (3) a
code isolation to extract the hot loop from a large application in order to apply

Assembly Code Analysis Using Stochastic Process Algebra 97

different transformations with different input data and finally (4) an analytical
modelling to select the best transformation.

While we use the MAQAO tool for code analysis, we have chosen to use
PEPA [8] as the performance modelling technique. Our objective is the inves-
tigation of the impact of each of the transformations on the execution time of
the code. The results obtained are compared to those obtained when executing
the code and it is shown that our approach based on PEPA achieves comparable
results, but at a much lower cost.

Structure of the paper: in Section 2, we give a brief overview of the tool
MAQAO and the formalism PEPA before describing our approach. In Section 3,
we present a case study and show how to apply our approach. Section 4 is
dedicated to the numerical results. We finally conclude, in Section 5, with a
discussion about the possible extensions of our work.

2 The Approach

The approach we propose allows bridging the gap between the code analysis
provided by MAQAO and the PEPA-based analytical modelling for a formal
analysis of the code performances. Before developing this approach, we present
the main characteristics of MAQAO and give a brief overview of PEPA.

2.1 MAQAO

MAQAO [4] stands for Modular Assembly Quality Analyzer and Optimizer. The
concept behind this tool is to centralise all low level performance information and
build correlations. As a result, MAQAO produces more and better results than
the sum of the existing individual methods. Additionally, being based after the
compilation phase allows a precise diagnostic of compiler optimisation successes
and/or failures. MAQAO provides several options among which we have:

– MAQAOPROFILE[5] is an option which allows us to give a precise weight
to all executed loops, therefore underscoring hotspots. Correlating this in-
formation provides the relevant metrics:
(i) the hotpath at run-time which passes through the whole program and
where the application spends the most of its time.
(ii) the monitoring trip count is very rewarding. By default most of compiler
optimisations target asymptotic performance. Knowing that a loop is sub-
jected to a limited number of iterations allows us to choose the optimisations
characterised by a cold-start cost.

– Static Analyser: MAQAO’s static module extracts the entire code structure
and expresses it using a set of graphs: Call Graphs (CGs), Control Flow
Graphs (CFGs) and Data Dependencies Graphs (DDGs). Computing the
DDGs is a key issue to determine critical path latency in a basic block
and perform instructions re-scheduling or any code manipulation technique.
It also allows an accurate understanding of dynamic performance hazards

98 L. Djoudi and L. Kloul

and determines the shortest dependency that corresponds to the overlapping
bottleneck.

– MAQAOADVISOR proposes different transformations to apply on the hot
loops, at the code source level, to improve the performances of the code. The
program is then compiled again and the new assembly code is resubmitted
to MAQAO for a new analysis of the code.

2.2 PEPA

In PEPA a system is described as an interaction of components which engage, ei-
ther singly or multiply, in activities. These basic elements of PEPA, components
and activities, correspond to states and transitions in the underlying Markov
process. Each activity has an action type. Activities which are private to the
component in which they occur are represented by the distinguished action type,
τ . The duration of each activity is represented by the parameter of the associated
exponential distribution: the activity rate. This parameter may be any positive
real number, or the distinguished symbol � (read as unspecified). Thus each
activity, a, is a pair (α, r) consisting of the action type and the activity rate
respectively. We assume a countable set of components, denoted C, and a count-
able set, A, of all possible action types. We denote by Act ⊆ A × R

+, the set
of activities, where R

+ is the set of positive real numbers together with the
symbol �.

PEPA provides a small set of combinators which allow expressions to be con-
structed defining the behaviour of components, via the activities they undertake
and the interactions between them.

Prefix (α, r).P : This is the basic mechanism for constructing component be-
haviours. The component carries out activity (α, r) and subsequently behaves as
component P .

Choice P +Q: This component may behave either as P or as Q: all the current
activities of both components are enabled. The first activity to complete, deter-
mined by a race condition, distinguishes one component, the other is discarded.

Cooperation P ��
L

Q: Components proceed independently with any activi-
ties whose types do not occur in the cooperation set L (individual activities).
However, activities with action types in the set L require the simultaneous in-
volvement of both components (shared activities). When the set L is empty, we
use the more concise notation P ‖ Q to represent P ��

∅
Q.

The published stochastic process algebras differ on how the rate of shared ac-
tivities are defined. In PEPA the shared activity occurs at the rate of the slowest
participant. If an activity has an unspecified rate, denoted �, the component is
passive with respect to that action type. This means that the component does
not influence the rate at which any shared activity occurs.

Hiding P/L: This behaves as P except that any activities of types within the
set L are hidden, i.e. they exhibit the unknown type τ and can be regarded as
an internal delay by the component. These activities cannot be carried out in
cooperation with another component.

Assembly Code Analysis Using Stochastic Process Algebra 99

Constant A
def= P : Constants are components whose meaning is given by a

defining equation. A
def= P gives the constant A the behaviour of the component

P . This is how we assign names to components (behaviours).
The evolution of a model is governed by the structured operational seman-

tics rules of the language. This gives rise to a continuous-time Markov chain
which can be solved to obtain a steady-state probability distribution from which
performance measures can be derived.

2.3 The Proposed Approach

When the assembly code of an application is submitted to MAQAO for instru-
mentation, the hot loops of the program are selected and the corresponding Data
Dependencies Graphs (DDGs) are generated, one for each hot loop. These graphs
are computed with intra and inter iteration dependencies and are enriched with
static cycles estimated by compiler.

In our approach, and in order to investigate the impact of each transforma-
tion on the code performances, we propose to extract, after each transformation
applied, the hot loops of an application using the DDGs. Based on these graphs
which provide only static information on the transformation applied, we build a
PEPA model for each new version of a selected loop.

.s

DDG info

COMPILER

.s

M
A

Q
A

O

PE
PA

Best Versions

code

Source
Transformations

Fig. 1. Building PEPA models from the DDGs of a selected loop

In this paper, three code transformations are investigated. Each time the DDG
of the selected loop is extracted and the corresponding PEPA model built. The
first transformation, called noUnroll transformation, consists in adding to the
hot loop, at the source level, a command which forces the compiler to not unroll
the code. The second transformation consists in reducing the definition interval
of the loop index. We call it the index inversion transformation. Finally the
last transformation investigated consists in breaking the data dependencies of
the code. In this case, an instruction of the hot loop is decomposed in several
instructions to execute several iterations separately.

In the following, using a case study we show how we apply each of the trans-
formations on the original code of a selected loop, the corresponding generated
DDG and the PEPA model.

100 L. Djoudi and L. Kloul

3 Case Study

To investigate the impact of the selected transformations on the execution time
of the code, we consider the CX3D application. CX3D is an MPI application
used to simulate Czochralski crystal growth [2], a method applied in the silicon-
wafer production to obtain a single crystal from semiconductors, metals, It
covers the convection processes occurring in a rotating cylindrical crucible filled
with liquid melt.

The program of the C3XD application contains several hot loops. The one
we select and extract is the inner loop of the following code where Imax = 31,
Kmax = 91 and Nmax = 41.
DO I = 2, Imax

DO K = 2, Kmax
DO N = 2, Nmax

Pnew = Max(Pnew,DP(I,K,N))
CONTINUE

In the following we apply each of the three transformations described above on
the inner loop of this code. In each case, we present the generated DDG of this
loop and for each graph, we describe its corresponding PEPA model.

3.1 The Original Code

To start, we consider the original version of the loop and generate its corre-
sponding DDG using MAQAO (Figure 2). Each node of the graph contains the
assembly instruction to be executed and a number.

Three types of instructions are used: add, ldfd and fmax. Instruction ldfd
represents a floating point memory access instruction. It is an 8−byte float point
load instruction. Instruction fmax determines the maximum numeric value of
its arguments (floating-point maximum) [9].

The numbering in the graph specifies the order in which the instructions have
to be executed. According to this numbering, several instructions have to be

4

5

1

1

1

6 1

7

3

2add

add 3

2

add

add

3

2

add

add

3

2

add

add

fmax

ldfd

ldfd

ldfd

fmax ldfd

fmax

fmax

DO I=2, Imax

 DO K=2, Kmax

DO N=2, Nmax

 Pnew = MAX (Pnew, DP(I,K,N)

 CONTINUE

The original code The DDG of the inner loop

Fig. 2. The original code and the DD Graph of selected loop

Assembly Code Analysis Using Stochastic Process Algebra 101

executed at the same time. For example, all loading instructions ldfd have to be
executed at the same time, at stage 1 of the execution process. Similarly, four
add instructions are to be executed simultaneously at stage 2 and stage 3. Unlike
the loading instructions, instructions fmax have to be executed sequentially.

In the following, we present the PEPA model of the graph of the selected loop.

The PEPA Model. This model consists of five components types. These com-
ponents are built such that their activities match the instructions in the graph
and their ordering. Note that because some instructions appear several times
in the graph and to avoid any ambiguity in the PEPA model, we number the
corresponding activities.

– Component Register plays the role of an instruction register which speci-
fies the next instruction to execute. It allows us to respect the instruction
order given by the graph as well as the simultaneous execution of certain in-
structions. Action type load models the loading instruction ldfd and action
fmax4 models the first fmax instruction to be executed at stage 4 of the
graph. Actions addi, i = 2, 3, model the instructions add to be executed at
stages 2 and 3 respectively.

Register
def= (load, r).Register1 Register2

def= (add3,�).Register3

Register1
def= (add2,�).Register2 Register3

def= (fmax4, s4).Register

– Component Maxi models the left path of the graph, from (ldfd, 1) to
(fmax, 7). Action types fmaxi, i = 5, 6, 7 model the three last fmax in
the path.

Maxi
def= (load,�).Maxi1 Maxi3

def= (fmax6, s6).Maxi4
Maxi1

def= (fmax4,�).Maxi2 Maxi4
def= (fmax7, s7).Maxi

Maxi2
def= (fmax5, s5).Maxi3

– Components Compi, i = 5, 6, each of these components models a branch,
Comp1 for branch (ldfd, 1) to (fmax, 5) and Comp2 for (ldfd, 1) to
(fmax, 6).

Compi
def= (load,�).Comp′i Comp′i

def= (fmaxi,�).Compi

– Component Compj,k, j = 1, . . . , Nmax and k = 1, 2 models the last branch
of the main part of the graph, that is from (ldfd, 1) to (fmax, 7). As this
fmax is the last instruction to be executed in the whole graph, Compj,k

allows us to model also the iteration process of the inner loop in the code.
If 1 ≤ j ≤ Nmax − 1, we have:

Compj,1
def= (load,�).Compj,2 Compj,2

def= (fmax7,�).Compj+1,1

Finally when j = Nmax, we have:

CompNmax,1
def= (load,�).CompNmax,2

CompNmax,2
def= (fmax7,�).Comp1,1

102 L. Djoudi and L. Kloul

– Component Adder models the behaviour of a sequence (add, 2) to (add, 3) in
the graph. The four sequences of this type in the graph have to synchronise
on both instructions. Therefore, these sequences are aggregated in the PEPA
model to a single component with the same activities and the same rate.

Adder
def= (add2, a2).Adder′ Adder′ def= (add3, a3).Adder

The whole model equation is:

CodeO
def
= (Adder ��

K1
(Register ��

K2
(Maxi ��

K3
(Comp1 ��

K4
(Comp2 ��

K4
Comp1,1)))))

where the cooperation sets are defined as K1 = {add2, add3}, K2 = {load,
fmax4}, K3 = {load, fmax5, fmax6, fmax7} and K4 = {load}.

3.2 The noUnroll Transformation

The noUnroll transformation consists in introducing a command to force the
compiler to not unroll the program. We use command “Cdir$ nounroll” as
shown in Figure 3. The consequence of such a command is the generation of a
much smaller dependency graph. Like in the previous graph, each node consists
of the assembly instruction and a number specifying its position in the execu-
tion process. This graph specifies that two instructions, add and ldfd, must be
executed simultaneously at stage 2.

The PEPA Model. As the DDG of the selected loop is simpler in this case,
the corresponding PEPA model is also simpler. It consists of three components.

– Component Registeri 1 ≤ i ≤ Nmax: as in the previous model, this compo-
nent plays the role of an instruction register. However, it also allows mod-
elling the Nmax iterations of the modelled loop. For 1 ≤ i < Nmax, we
have:

Registeri
def= (add,�).Register′i Register′i

def= (fmax,�).Registeri+1

2add

1add

2ldfd

3fmax

DO I=2, Imax

 DO K=2, Kmax

DO N=2, Nmax

 Pnew = MAX (Pnew, DP(I,K,N)

Cdir$ nounroll

 CONTINUE

The DDG of the inner loopNounroll transformation

Fig. 3. The code with no unroll and the DD Graph of selected loop

Assembly Code Analysis Using Stochastic Process Algebra 103

The last iteration of the loop is given by i = Nmax, such that:

RegisterNmax
def= (add,�).Register′Nmax

Register′Nmax
def= (fmax,�).Register1

– Component Process1 models the sequence of add instructions. However, as
the second add in the sequence has to be executed at the same time as ldfd,
both are modelled using activity add load.

Process1
def= (add, a).P rocess′1 Process′1

def= (add load, l).P rocess1

– Component Process2 models the ldfd and fmax sequence of instructions.

Process2
def= (add load,�).P rocess′2 Process′2

def= (fmax, f).P rocess2

The whole model equation is given by:

CodeN
def= (process1 ��

{add load}
process2) ��

{add,fmax}
Register

3.3 Index Inversion Transformation

This transformation consists in exchanging the inner loop index with the outer
loop index which is smaller. Thus the number of iterations of the inner loop
becomes smaller (31 instead of 41). Consequently, the generated graph is a simple
two node graph. This dramatic reduction in the graph size, compared to the one
of the original code, is due to the fact that as Nmax is now smaller, the CPU
does not need to use the L3 memory cache, it uses the L2 memory cache only.

The PEPA Model. For this version of the program, the PEPA model consists
of two components Process and Registeri, 1 ≤ i ≤ Nmax.

– Component Process models the behaviour described by the graph. That is
loading the data before executing instruction fmax.

Process
def= (load, l).P rocess1 Process1

def= (fmax, f).P rocess

2

1

fmax

ldfd

DO N=2, Nmax

DO I=2, Imax

 Pnew = MAX (Pnew, DP(I,K,N)

 CONTINUE

 DO K=2, Kmax

Indices I and N inversion The DDG of the inner loop

Fig. 4. Code with index inversion and the DD Graph of selected loop

104 L. Djoudi and L. Kloul

– Component Registeri models the iteration process.

Registeri
def= (fmax,�).Registeri+1 if 1 ≤ i < Nmax

Registeri
def= (fmax,�).Register1 if i = Nmax

The model equation consists of the cooperation of the two components of the
model over activity fmax.

CodeI
def= Process ��

{fmax}
Register1

3.4 Breaking the Dependencies

The last transformation investigated consists in breaking the data dependencies
of the code. In this case, the instruction of the inner loop is decomposed in four
instructions in order to execute four iterations in one (see Figure 5).

Note that lfetch instruction is used to explicitly prefetch data into the L1,
L2, or L3 caches [9].

The PEPA Model. As the DDG generated after this transformation is bigger
than the previous one, the PEPA model is also bigger. It consists of eleven
components in which a combined name for an activity implies the simultaneous
execution of the instructions behind this name.

– Component Register plays the role of the instruction register which states
the next instruction to be executed in a program. Following the numbering
used in the graph, the order of instructions is the following.

Register
def= (ldfd add1, l).Register1

Register1
def= (lfetch add2, d2).Register2

Register2
def= (lfetch add3, d3).Register3

Register3
def= (lfetch add4, d4).Register4

Register4
def= (lfetch add5, d5).Register5

add

ldfd

add

add add

ldfd

add

fmax fmax

fmax

ldfd add

lfetch

lfetch

add

lfetch

ldfd

fmax

add

lfetch addadd

add

1

2

3

4

5

6

7

add add add

Code with broken dependencies The DDG of the inner loop

DO I=2, Imax
 DO K=2, Kmax

DO N=2, Nmax

 CONTINUE

Pnew=MAX(Pnew1,Pnew2,Pnew3,Pnew4)

Pnew4 = MAX (Pnew, DP(I,K,N+3))

Pnew3 = MAX (Pnew, DP(I,K,N+2))

Pnew2 = MAX (Pnew, DP(I,K,N+1))

Pnew1 = MAX (Pnew, DP(I,K,N))

Fig. 5. The code with broken dependencies

Assembly Code Analysis Using Stochastic Process Algebra 105

Register5
def= (fmax6, f6).Register6

Register6
def= (fmax7, f7).Register

Note that the index of an activity refers to the execution stage number.
– Component Process1 models sequence (ldfd, 1) to (fmax, 6) which appears

twice in the graph. As both sequences must synchronise on both instructions,
a single component models both sequences.

Process1
def
= (ldfd add1, �).P rocess′

1 Process′
1

def
= (fmax 6, �).P rocess1

– Component Process2 models sequence (add, 1) to (lfetch, 2).

Process2
def
= (ldfd add1, �).P rocess′

2 Process′
2

def
= (lfetch add2, �).P rocess2

– Component Process3 models sequence (ldfd, 1) to (fmax, 7) which appears
twice in the graph. As both sequences must synchronise on both instructions,
a single component models both sequences.

Process3
def
= (ldfd add1, �).P rocess′

3 Process′
3

def
= (fmax7, �).P rocess3

– Component Process4 models sequence (add, 1) to (lfetch, 3).

Process4
def
= (ldfd add1, �).P rocess′

4 Process′
4

def
= (lfetch add3, �).P rocess4

– Component Process5 models sequence (add, 2) to (add, 3).

Process5
def
= (lfetch add2, �).P rocess′

5 Process′
5

def
= (lfetch add3, �).P rocess5

– Component Process6 models sequences starting with (add, 2) and finishing
with add or lfetch at stage 4. The three sequences can be modelled using a
single component.

Process6
def
= (lfetch add2, �).P rocess′

6 Process′
6

def
= (lfetch add4, �).P rocess6

– Component Process7 models sequence (add, 2) to (lfetch, 5).

Process7
def
= (lfetch add2, �).P rocess′

7 Process′
7

def
= (lfetch add5, �).P rocess7

– Component Process8 models sequence (add, 3) to (lfetch, 4).

Process8
def
= (lfetch add3, �).P rocess′

8 Process′
8

def
= (lfetch add4, �).P rocess8

– Component Process9 models sequence (add, 3) to (add, 5).

Process9
def
= (lfetch add3, �).P rocess′

9 Process′
9

def
= (lfetch add5, �).P rocess9

– Component Iterationi, 1 ≤ i ≤ Nmax: it models the iteration process of
the loop. If 1 ≤ i < Nmax, we have:

Iterationi
def
= (ldfd add1, �).Iterationi,1 Iterationi,1

def
= (fmax7, �).Iterationi

When i = Nmax, we have

IterationNmax
def= (ldfd add1,�).IterationNmax,k

IterationNmax,1
def= (fmax7,�).Iteration1

106 L. Djoudi and L. Kloul

The complete model equation is:
CodeC

def= Iteration1 ��
M1

(Register ��
M2

(Process1 ��
M3

(Process2 ��
M4

(Process3

��
M3

(Process4 ��
M3

(Process5 ��
M6

(Process6 ��
M7

(Process7

��
M8

(Process8 ��
M5

Process9)))))))))

where the cooperation sets are defined as M1 = {ldfd add1, fmax7},
M2 = {ldfd add1, lfetch add2, lfetch add3, lfetch add4, lfetch add5, fmax6,
fmax7}, M3 = {ldfd add1}, M4 = {ldfd add1, lfetch add2},
M5 = {lfetch add3}, M6 = {lfetch add2, lfetch add3}, M7 = {lfetch add2,
lfetch add4} and M8 = {lfetch add5}.

4 Numerical Results

As one of the sensitive performance measures for our application is the time
required to complete the execution of the selected loop, we have used the HYDRA
analyser [3] to compute the cumulative passage-time distribution function for
completing a hot loop. To translate the PEPA model into an HYDRA input file,
we have used Imperial PEPA Compiler (IPC) [1].

The parameters values we have used in our experiments are reported in Ta-
ble 6. For these values, the cumulative passage-time distribution function for
completing the execution of the selected loop is given in Figures 7 and 8.

Original NoUnroll Inversion Breaking Dep.

Rates Values Rates Values Rates Values Rates Values

s1, s2, s 3 l 1.25 f 7.5 d1, d2, d3, f1, l 7.5
s3 2.143 f 15 l 1.25 d4 1.667
a1, r 7.5 a 7.5 f2 3
a2 1.5

Fig. 6. The parameters values (nanoseconds−1)

Figures 7 and 8 show that, on the three transformations investigated, only the
index inversion transformation has a positive impact on the execution time of
the selected loop. For all values of the iteration number Nmax, the time required
to complete the execution is smaller when applying this transformation. Thus,
when Nmax = 12 (Figure 7 left), we can see that, in the worst case, with the
original code the loop will be completed in 10 nanoseconds while when using
the index inversion, the completion time is only 5 nanoseconds.

Similarly, when Nmax = 40 (Figure 8 right), it will require about 30.10−9

seconds to complete the loop in the the worst, instead of 10 nanoseconds with
the index inversion.

These figures show also that it is far much better to keep the loop in its original
version than using any other transformation as both the noUnroll and breaking
dependencies transformations may increase the execution time, the worst being
the breaking dependencies transformation.

Assembly Code Analysis Using Stochastic Process Algebra 107

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40

Pr
ob

ab
ility

Time in nanoseconds

"Inversion"
"Original"

"NoUnroll"
"Broken dependencies"

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50

Pr
ob

ab
ility

Time in nanoseconds

"Inversion"
"Original"

"NoUnroll"
"Broken dependencies"

Fig. 7. Cumulative passage-time distribution function for Nmax = 12 and Nmax = 20

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80

Pr
ob

ab
ility

Time in nanoseconds

"Inversion"
"Original"

"NoUnroll"
"Broken dependencies"

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90

Pr
ob

ab
ility

Time in nanoseconds

"Inversion"
"Original"
"Nounroll"

"Broken dependencies"

Fig. 8. Cumulative passage-time distribution function for Nmax = 32 and Nmax = 40

In the following we compare these results of the analytical model to the exe-
cution times of the loop on a BULL Itanium 2 Novascale system, 1.6GHz, 3MB
of L3. The codes were compiled using Intel ICC/IFORT 9.1.

As specified by the DDGs seen in Section 3, some instructions have to be
executed at the same time. This is possible on a non parallel machine like Itanium
2 because its processor is built around the EPIC (Explicitly Parallel Instruction
Computing) architecture which main feature is the coupling between software
and hardware. In this case the compiler is given the task of arranging the code
in a certain way to benefit from the parallelism in order to simplify the hardware
architecture of the processor.

Table 9 summarises the execution times obtained for our loop. The results are
given for different values of the iteration number Nmax and the three transfor-
mations. The times reported in this table are higher than the ones obtained with

108 L. Djoudi and L. Kloul

Loop trip Original NoUnroll Inversion Breaking Dep.

12 134 135 61 309
20 404 405 132 689
32 787 788 265 1279
40 938 1052 372 1739

Fig. 9. Execution times (nanoseconds)

the analytical model. The main reason is related to the rates used in the PEPA
models. These rates are computed using the number of cycles the compiler has
estimated for each assembly instruction before the code execution. During the
execution these estimated numbers may not be the ones used, and be higher be-
cause of the processor speed, its availability, the inputs/outputs, or the memory
size.

However, like the results of the analytical model, the results in Table 9 show
that the index inversion transformation leads to the best execution times. More-
over, like previously, they show that it is better to use the original code than the
breaking dependencies or the noUnroll transformation.

Clearly these results lead to the same conclusions as the ones obtained using
our approach. However, our approach allows us to investigate the impact of
different transformations on a selected loop quicker than a direct execution of
the code. Indeed, if the results reported in Table 9 are the execution times of
just the loop, the whole program of the CX3D application had to be executed.
And the execution of this program takes several minutes using MAQAO.

5 Conclusions

In this paper we have proposed an approach which allows investigating the ef-
fectiveness of several optimisations on the execution time of the code.

The stem of our work is the diagnostic that in scientific computing a conse-
quent fraction of the execution time is the time spent in loops with a limited
number of iterations. We come out with a novel method for quickly evaluating
different transformations in order to select the best one. The technique is faster
than simulation and instrumentation because we isolate and evaluate just the
hot loops.

In the future, we plan to extend our approach in two important ways. First,
we are interested in developing an interface between MAQAO and PEPA, in
order to provide the user with an automatic formal approach. We also plan to
propose an infrastructure to cooperate with dynamic analysis when we have
large input data that lead to cache misses. Indeed, while our approach is fairly
straightforward, it does rely on a host of program analysis available in Itanium
2 compiler. In the case of large input data, performance may be unpredictable
even if only two parameters are taken into account. In the future, we propose to
combine analytical modelling with the tracing of cache behaviour.

Assembly Code Analysis Using Stochastic Process Algebra 109

References

1. Bradley, J.T., Dingle, N.J., Gilmore, S.T., Knottenbelt, W.J.: Extracting passage
times from PEPA models with the HYDRA tool: A case study. In: Proceedings of
the Nineteenth annual UK Performance Engineering Workshop, pp. 79–90 (2003)

2. Czochralski, J.: Z. Phys. Chem. 92 (1918)
3. Dingle, N.J.: Parallel Computation of Response Time Densities and Quantiles in

Large Markov and Semi-Markov Models, PhD. Thesis, Imperial College, London
(2004)

4. Djoudi, L., Barthou, D., Carribault, P., Lemuet, C., Acquaviva, J.-T., Jalby, W.:
MAQAO: Modular Assembler Quality Analyzer and Optimizer for Itanium 2. In:
The 4th Workshop on EPIC architectures and compiler technology, San Jose (2005)

5. Djoudi, L., Barthou, D., Tomaz, O., Charif-Rubial, A., Acquaviva, J., Jalby, W.:
The Design and Architecture of MAQAOPROFILE: an Instrumentation MAQAO
Module. In: The 6th Workshop on architectures and compiler technology, San Jose
(2007)

6. Djoudi, L., Noudohouenou, J., Jalby, W.: MAQAOAdvisor: A MAQAO Module
For Detecting Analyzing And Fixing Performance Problem. In: The 1st Interna-
tional Workshop on Tools Infrastructures and Methodologies for the Evaluation of
Research Systems, Austin (2008)

7. Graham, S.L., Kessler, P.B., Mckusick, M.K.: Gprof: A call graph execution pro-
filer. SIGPLAN Not. 17(6), 120–126 (1982)

8. Hillston, J.: A Compositional Approach to Performance Modelling, PhD. Thesis,
University of Edinburgh (1994)

9. Intel Itanium 2 Processor Reference Manual For Software Development and Opti-
mization, 251110-002 (April 2003)

10. Larus, J.R., Schnaar, E.: EEL: Machine-Independent Executable Editing. In: PLDI
1995: Proceedings of the ACM SIGPLAN conference on Programming language
design and implementation, La Jolla, California (June 1995)

11. Hill, M.: ”prof”, Unix Programmer’s Manual, Section 1. Bell Laboratories, NJ
(January 1979)

Product Form Steady-State Distribution for

Stochastic Automata Networks with Domino
Synchronizations

J.M. Fourneau

1 PRiSM, Université de Versailles-Saint-Quentin, CNRS, UniverSud,
Versailles, France

2 INRIA Projet Mescal, LIG, CNRS, Montbonnot, France

Abstract. We present a new kind of synchronization which allows Con-
tinuous Time Stochastic Automata Networks (SAN) to have a prod-
uct form steady-state distribution. Unlike previous models on SAN with
product form solutions, our model allows synchronization between three
automata but functional rates are not allowed. The synchronization is
not the usual ”Rendez-Vous” but an ordered list of transitions. Each
transition may fail. When a transition fails, the synchronization ends
but all the transitions already executed are kept. This synchronization
is related to the triggered customer movement between queues in a net-
work and this class of SAN is a generalization of Gelenbe’s networks with
triggered customer movement.

1 Introduction

Since they have been introduced by B. Plateau [19] to evaluate the performance
of distributed algorithms, Stochastic Automata Networks (SAN for short) have
been associated to new research on numerical solvers. The key idea is to take into
account the tensor decomposition of the transition matrix of a SAN to improve
the storage of the model and the complexity of the vector-matrix product [7].
An automaton consists of states and transitions which represent the effects of
events. These events are classified into two types: local events or synchronizing
events. A local event affects a single automaton and is modeled by some local
transitions. On the opposite, a synchronizing event modifies the state of more
than one automaton (but loops are considered as valid transitions). Transitions
rates may be fixed or functions of the states of the whole set of automata. For
a continuous-time SAN, it is proved that the generator matrix of the associated
Markov chain can be written as:

Q =
n
⊗g
i=1

Li +
s∑

r=1

n
⊗g
i=1

M r
i + N, (1)

where n is the number of automata, s is the number of synchronizations, Li and
M r

i are matrices which describe respectively the local transitions and the effect

N. Thomas and C. Juiz (Eds.): EPEW 2008, LNCS 5261, pp. 110–124, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Product Form Steady-State Distribution for SAN 111

of synchronization r on automaton i. ⊗g and ⊕g denote the generalized tensor
product and generalized tensor sum. N is a diagonal matrix used to normal-
ize the generator. These operators have been generalized to handle functional
rates and probabilities in the definition of the SAN. As we consider here models
without functions, we only have to use a simpler version of this equation with
ordinary tensor sum and product. We do not present here the general theory
which now can be found in many publications [7,10,19,20,23]. The first algorithm
proposed was a numerical resolution of steady-state distribution of the Markov
chain associated to a SAN [20] using the power method. Since then, several nu-
merical methods have been investigated [3,4,5,7,12,23]. As a SAN is a modular
decomposition into automata which are connected by synchronized transitions,
SAN are closely related to Stochastic Process Algebra. Therefore, new results
on SAN may be easily translated into other models based on composition such
as process algebra, for instance PEPA ([16]). The tensor decomposition of the
generator has been generalized for Stochastic Petri Nets (see for instance [6])
and other modular specification methods as well [18].

Recently, some analytical results for SAN have been presented. First, B.
Plateau et al. [21] have considered SAN without synchronization. They proved
that a product form steady-state distribution exists as soon as some local bal-
ance conditions are satisfied. Even without synchronization, the transitions of
the automata are still dependent because of functional rates and the generator
matrix has in this case a very simple expression:

Q =
n
⊗g
i=1

Li. (2)

Plateau’s result is closely related to Boucherie’s result on Markov chains in
competition [1] and Robertazzi’s theorems on Petri nets [22]. This theory has
been generalized in [9,10] to find a very simple algebraic sufficient condition for
product form of steady-state solution of continuous-time SAN. Similarly a more
complex sufficient condition has been proved in [11] for discrete-time SAN. These
conditions are based on the existence of a common vector in the kernel of all the
matrices obtained when the functional rates change.

In [2], we have considered SANs with a special case of synchronization denoted
as a limited synchronization. In a limited synchronization, only two automata are
active. We have also restricted ourself to SAN without functional rates. Let I be
the identity matrix. The generator of a SAN with limited synchronization is:

Q = ⊗n
i=1Li +

s∑
r=1

⊗n
i=1M

r
i + N, (3)

with for all r, M r
i = I for all i except two distinct indices. For a synchronization

r, these are denoted as the master and the slave. We note the indices as msr(r)
and sl(r). Note that as functional terms are not allowed, the former expression
is based on usual tensor sum ⊕ and product ⊗. We proved a sufficient condition
to have a product form steady-state distribution which is based on the existence
of a solution for a fixed-point system between the instantaneous arrival rate

112 J.M. Fourneau

and the steady-state distributions of the automata in isolation. Some typical
queueing networks such as Jackson’s networks or Gelenbe’s networks of positive
and negative customers [13] had been shown to be examples of this type of SAN.
For both networks, the fixed-point system is equivalent to the well-known flow
equation. Our proof was based on global balance equation. Indeed, there is no
local balance (in the usual sense) for Gelenbe’s networks.

Here we extend this result for synchronizations between three automata. How-
ever we have to change the description of synchronizations. The assumption on
synchronization used to define the SAN methodology was the ”Rendez-Vous”.
Here, we consider a completely different kind of synchronization: the Domino
synchronization that we will introduce more formally in the next section. Briefly,
a Domino synchronization is an ordered list of tuples (automaton number, list
of transitions inside this automaton). The synchronization takes place according
to the order of the list. The synchronization may completely succeed or be only
partial if some conditions are not satisfied. The main idea comes from the net-
works of queues with triggered customer movement presented by Gelenbe [14].
We also generalize a previous approach [8] where a similar result based on the
global balance equation and a fixed point system had been published. Here we
present a more general framework, more examples of product form results, and
show some links with the algebraic theory presented in [9,10] where the assump-
tions are also based on some properties of the eigenvalues of the automata in
isolation.

The rest of the paper is organized as follows: in section 2, we describe Domino
synchronization. In section 3, we state the main theorem of the paper. Section 4
is devoted to examples and links with previous results on other product form for
component based models such as PEPA. Finally, we give some conclusions and
some perspectives to extend our results to more general synchronizations.

2 Domino Synchronization

In this paper, we restrict ourself to continuous-time SAN without functions. The
generator is based on the tensor sum and product local components. Recall that
with

A =
(

a11 a12

a21 a22

)
and B =

⎛⎝ b11 b12 b13

b21 b22 b23

b31 b32 b33

⎞⎠ ,

the tensor sum A ⊕ B is given by:⎛⎜⎜⎜⎜⎜⎝
a11 + b11 b12 b13 a12 0 0

b21 a11 + b22 b23 0 a12 0
b31 b32 a11 + b33 0 0 a12

a21 0 0 a22 + b11 b12 b13

0 a21 0 b21 a22 + b22 b23

0 0 a21 b31 b32 a22 + b33

⎞⎟⎟⎟⎟⎟⎠ ,

Product Form Steady-State Distribution for SAN 113

and the tensor product A ⊗ B is:⎛⎜⎜⎜⎜⎜⎝
a11b11 a11b12 a11b13 a12b11 a12b12 a12b13

a11b21 a11b22 a11b23 a12b21 a12b22 a12b23

a11b31 a11b32 a11b33 a12b31 a12b32 a12b33

a21b11 a21b12 a21b13 a22b11 a22b12 a22b13

a21b21 a21b22 a21b23 a22b21 a22b22 a22b23

a21b31 a21b32 a21b33 a22b31 a22b32 a22b33

⎞⎟⎟⎟⎟⎟⎠ .

The state space of the system is the cartesian product of the states of the au-
tomata which are combined in the network. The effective state space is in general
only a subset of this product. The synchronization formerly used for SAN are
defined as ”Rendez-Vous”. This simply says that a synchronized transition is
possible, if and only if, all automata are ready for this synchronized transition.
We have to consider a completely different type of synchronization: the Domino
of three automata. The name comes from a group of Domino tiles which fall one
after the other. Of course, if one tile does not fall, the Domino effect stops but
the tiles already fallen stay down. As we synchronize three automata and we do
not allow functional rates, the generator is given by:

Q = ⊗n
i=1Li +

s∑
r=1

⊗n
i=1M

r
i + N, (4)

with for all r, M r
i = I for all i except three distinct indices. Let us now more

precisely define a Domino synchronization.

Definition 1. Let r be a synchronization number or label. The Domino synchro-
nization consists of an ordered list of three automata called the master msr(r),
the slave sl(r) and the relay rl(r). The synchronization is performed according
to the list order. The master of synchronization r is the initiator of the synchro-
nization. It performs its transition. The slave may obey or not to the request of
the master. If it does not follow the master, it makes a loop and the synchro-
nization stops without any interaction with the third automaton (i.e. the relay).
But the transition of the master is kept. If the slave obeys, it performs a real
transition (i.e. not a loop) and the third automaton (i.e. the relay) now has to
make a transition. This transition is either a loop (the relay refuses to follow)
or a real transition (the relay obeys). In both cases, the master and the slave
perform their transitions. The relay and the slave follow the master according to
their local state and the list of transitions marked by label r.

Remark 1. Note that this definition of synchronization implies that the master
is never blocked by the slave or the relay (it is not a rendez-vous). This implies
that every state of the automata sl(r) and rl(r) is the origin of at least one
synchronized transition marked by synchronization label r.

114 J.M. Fourneau

The automata are defined by the following matrices which may be either finite
or infinite:

– n transition rate matrices denoted as Ll for automaton l. Ll models the rates
of local transitions. The matrices are normalized, i.e.

Ll[k, i] ≥ 0 if i �= k and
∑

i

Ll[k, i] = 0.

– s tuples of three matrices (Dr, Er, T r). In the tensor product associated
to Domino synchronization r ⊗n

i=1M
r
i all matrices except (Dr, Er, T r) are

equal to Identity. In the usual description of a SAN [19] the master of a
synchronization is a transition rate matrix and the other matrices used in
the tensor product are transition probability matrices. We use the same
formulation here. In Dr we find the transitions due to synchronization r on
the master automaton. It is assumed that the synchronizations always have
an effect on the master (i.e. its transition is not a loop).

The effect of synchronization r on the slave (i.e. automaton sl(r)) is spec-
ified by matrix Er. Er is a transition probability matrix. For a Domino syn-
chronization and for any state k we assume the following: either Er[k, k] = 0,
or Er[k, k] = 1. If Er[k, k] is 1, synchronization r has no effect on the slave
when it is in state k It is said that synchronization r fails during the second
step. The synchronized transition takes place on the master but there is no
effect on the slave and the synchronization is stopped at this step. Thus, the
relay does not synchronize.

Otherwise (i.e. Er[k, k] = 0), row k of matrix Er gives the transition
probability out of state k for the slave. And the synchronization tries now
to trigger a transition of the automaton rl(r). T r is a transition probability
matrix with the same assumptions already presented for Er. Similarly, the
synchronization may have an effect on the relay (a real transition and a
probability in matrix T r) or it may fail in state k (T r[k, k] = 1). All matrices
are normalized, i.e. for all k we have:

Dr[k, i] ≥ 0 if i �= k and
∑

i Dr[k, i] = 0,
Er[k, i] ≥ 0 and

∑
i Er[k, i] = 1,

T r[k, i] ≥ 0 and
∑

i T r[k, i] = 1.

– Due to the assumptions on Er it is useful to decompose the matrix into two
non negative matrices Er

1 and Er
2 such that Er = Er

1 + Er
2 , and for all i and

j we have: Er
1 [i, j] = Er[i, j]1Er[i,i]=0 and Er

2 [i, j] = Er[i, j]1Er[i,i]=1. Thus
Er

1 describes the slave transitions when it obeys to the master request while
Er

2 models the loops made by the slave when it does not accept the request.

To complete the description of the generator of the SAN, one must give the
description of the normalization associated to synchronization r. Let N r be this
matrix. N r is a negative diagonal matrix and the total normalization (denoted
as N in Equation 1) is N =

∑s
r=1 N r.

Product Form Steady-State Distribution for SAN 115

Definition 2. Let M be a matrix, σ(M) is a diagonal matrix with the size of M
such that for all index i, σ(M)[i, i] =

∑
j M [i, j]. As usual diag(M) is a diagonal

matrix whose elements are the diagonal elements of M .

For the sake of readability, we assume that the SAN is suitably reordered such
that the automata involved in synchronization r are the first three ones. The
description of the other automata is simply an Identity which is denoted here as
I1 to avoid the confusion. The SAN description associated to Domino synchro-
nization r consists in 4 terms:

1. (Dr − diag(Dr)) ⊗ Er
1 ⊗ T r ⊗ I1: the slave accepts the synchronization.

2. (Dr −diag(Dr))⊗Er
2 ⊗I⊗I1: the slave does not accept the synchronization.

3. diag(Dr) ⊗ σ(Er
1) ⊗ σ(T r) ⊗ I1: normalization of term 1.

4. diag(Dr) ⊗ σ(Er
2) ⊗ I ⊗ I1: normalization of term 2.

3 Product Form Solution

We now establish a sufficient condition for a SAN with Domino synchronization
to have steady-state distribution which is obtained as the product of the steady-
state distributions of the automata in isolation.

Remark 2. Let us introduce some notation:

– To keep the proofs as clear as possible, we use in the following indices i, j,
k and m for states, l for an automaton, r for a synchronization.

– Finally, we denote by ((k1, k2, · · · , kn)�(list (automaton, state))) the state
where all automata are in the state defined by (k1, k2, · · · , kn), except the
ones in the list. So, ((k1, k2, · · · , kn)�((l, i))) represents the state where for
all m, automaton m is in state km except automaton l which is in state i.

Theorem 1. Consider a SAN with n automata and s with Domino synchro-
nizations. Consider matrices Dr = Dr − diag(Dr) and Er associated to the
description of synchronization r. Assume that Er and Dr share a positive
eigenvector. Let gl be such an eigenvector. Let Ωr (resp. Γr) be the eigenvalue
for matrix Er (resp. Dr) associated to gl. If gl is in the kernel of matrix[
Ll+

∑s
r=1

(
Dr1msr(r)=l+Γr(Er − σ(Er))1sl(r)=l+ΓrΩr(T r−σ(T r))1rl(r)=l

)]
,

then the steady-state distribution has a product form solution:

Pr(X1, X2, · · · , Xn) = C

n∏
l=1

gl(Xl), (5)

and C is a normalization constant.

The proof is based on some properties of tensor products which are presented at
the end of this section. Let us first present below the global balance equation.
Here, we just explain the various terms which appear in this equation.

Pr(k)(
n∑

l=1

∑
i�=kl

Ll[kl, i] +
s∑

r=1

∑
i�=kmsr(r)

Dr[kmsr(r), i]) (6)

116 J.M. Fourneau

=
n∑

l=1

∑
i�=kl

Ll[i, kl]Pr(k�((l, i)))

+
s∑

r=1

∑
i�=kmsr(r)

Dr[i, kmsr(r)]
∑

j �=ksl(r)

Er[(j, ksl(r))]
∑

m �=krl(r)

T r[m, krl(r)] ×

Pr(k�((msr(r), i), (sl(r), j), (rl(r), m)))

+
s∑

r=1

∑
i�=kmsr(r)

Dr[i, kmsr(r)]
∑

j �=ksl(r)

Er(j, ksl(r))1T r[krl(r),krl(r)]=0 ×

Pr(k�((msr(r), i), (sl(r), j)))

+
s∑

r=1

∑
i�=kmsr(r)

Dr[i, kmsr(r)]1Er[ksl(r),ksl(r)]=0Pr(k�((msr(r), i)))

(7)

– On the left-hand-side, Ll[kl, i] is the rate for local transition out of state
kl for automaton l and Dr[kl, i] is the transition rate of a synchronization
which jumps out of state kl.

– On the right-hand-side, the first term describes local transitions into state
kl . The second term is associated to a complete synchronization of the
three automata. In the third term, we consider a synchronization which
fails at the third step (i.e. the relay), and finally, the last term describes a
synchronization which fails at the second step. The slave does not accept the
transition.

Let us rewrite the conditions of the theorem: there exists a solution (gl)l,
(Γr, Ωr)r to the fixed point system:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Γr gl = gl Dr if msr(r) = l,
Ωr gl = gl Er if sl(r) = l,
gl

[
Ll +

∑s
r=1

(
Dr1msr(r)=l

+Γr(Er − σ(Er))1sl(r)=l

+ ΓrΩr(T r − σ(T r))1rl(r)=l

)]
= 0,

(8)

These equations look quite complex, but a simple interpretation may be given
to all of them. The third equation defines gl as the invariant distribution (up to
a normalization constant) of a continuous-time Markov chain which models the
automaton in isolation (i.e. glMl = 0), with:

Ml = Ll +

s�

r=1

�
Dr1msr(r)=l + Γr(Er − σ(Er))1sl(r)=l + ΓrΩr(T r − σ(T r))1rl(r)=l

�
.

(9)

Remember that Er and T r are transition probability matrices. Thus Er −
σ(Er) and T r − σ(T r) are generators. As Ll and Dr are generators, and Γr and
Ωr are positive, matrix Ml is the generator of a continuous-time Markov chain.
Of course, this construction does not prove in general that the chain is ergodic.

Product Form Steady-State Distribution for SAN 117

However, if the chain is finite and if matrix Ll is irreducible, then matrix Ml is
irreducible and the chain of the automaton in isolation is ergodic. Furthermore,
the four terms of the summation have an intuitive interpretation. The first term
corresponds to the local transitions. The last three terms represent the effects
of the synchronization on the automata involved in a Domino. The effect on the
master are explicitly represented by the transition matrix Dr while the effect
on the slave and the relay are represented by the matrices Er − σ(Er) and
T r − σ(T r) multiplied by appropriate rates. These rates are defined by the first
two equations of the fixed point system. Consider the first one: Γr gl = gl Dr.
This equation states that Γr is the left-eigenvalue associated to eigenvector gl

for an operator obtained from matrix Dr by zeroing the diagonal elements. The
examples presented in the next section show that this equation is a generalization
of queueing networks flow equation. Similarly, Ωr is defined as the eigenvalue
of Er. Note that, like in product form queueing network, the existence of these
flows (Γr , Ωr) does not imply that the whole network send a Poisson streams of
synchronization on automaton l. Similarly, the product form holds even if the
underlying Markov chain is not reversible.

It is worthy to remark that the conditions of the theorem are based on the
same kind of properties used in [9,10,11] to prove product form steady-state dis-
tributions for other types of SAN. We present in the next section some examples
where the product form holds. Before let us proceed with the proof of the theo-
rem using relations between tensor products and product form distributions we
have already used in [9,10,11].

3.1 Proof of the Theorem

The tensor product and sums have many algebraic properties (see [7] for proofs).
We give some of them in the following for the sake of completeness.

Property 1 (Basic properties of Tensor Product). Let A, B and C, A1, A2, B1,
B2 be arbitrary matrices, the following properties hold:

– Associativity: (A ⊗ B) ⊗ C = A ⊗ (B ⊗ C).
– Distributivity over Addition:

(A1 + A2) ⊗ (B1 + B2) = A1 ⊗ B1 + A1 ⊗ B2 + A2 ⊗ B1 + A1 ⊗ B2.

– Compatibility with matrix multiplication: For all vectors πA and πB whose
sizes are consistent we have:

(πA ⊗ πB)(A ⊗ B) = (πAA) ⊗ (πBB).

Before proceeding with the proof it is worthy to remark that a product form
solution of n distributions (πl)l=1..n can be written as Cπ1 ⊗ π2 ⊗ . . . ⊗ πn.
Consider the generator or the SAN:

Q = ⊗n
i=1Li +

s∑
r=1

⊗n
i=1M

r
i +

s∑
r=1

N r, (10)

118 J.M. Fourneau

with for all r, M r
i = I for all i except for the master, the slave and the relay of

synchronization r. A steady-state distribution of the SAN is a probability vector
π which satisfies πQ = 0. Assume that π has product form Cg1 ⊗ g2 ⊗ . . . ⊗ gn.
Thus one must check that:

(g1 ⊗g2⊗ . . .⊗gn)(⊗n
i=1Li)+

s∑
r=1

(g1⊗g2⊗ . . .⊗gn)((⊗n
i=1M

r
i)+N r) = 0. (11)

First let us remember that A ⊕ B = A ⊗ I + I ⊗ B. Therefore the tensor
sum becomes the sum of n tensor products of n matrices (n − 1 of which are
equal to Identity). We then apply the compatibility with ordinary product and
we remark that glI = gl to simplify the tensor product.

We have n + 2s products of n terms. The key idea is to factorize into n terms
such that each term is a tensor product of n vectors. Furthermore each of these
product is equal to zero because one of the vectors is zero. More precisely, each
of these terms is equal to: (g1W1 ⊗ g2W2 ⊗ . . .⊗ gnWn) and all matrices Wi are
equal to Identity except one which is equal to Ml (defined in Equation 9). As
glMl = 0, the tensor product is zero.

For the sake of readability we first present the proof for the first synchroniza-
tion and the three automata involved in this synchronization. We also assume
that the SAN has been reordered such that these automata are the first three
ones. More precisely, the master is the first automaton, the slave the second
and the relay is the third. We only consider the local terms associated to these
automata and the first synchronization. The description of (g1 ⊗ g2 ⊗ . . .⊗ gn)Q
consists in 7 terms (three coming from the tensor sum, two for the Domino and
two for the normalization of the Domino):

(g1F1 ⊗ g2 ⊗ g3 ⊗ . . . ⊗ gn)
+ (g1 ⊗ g2F2 ⊗ g3 ⊗ . . . ⊗ gn)
+ (g1 ⊗ g2 ⊗ g3F3 ⊗ . . . ⊗ gn)
+ (g1(Dr − diag(Dr)) ⊗ g2E

r
1 ⊗ g3T

r ⊗ . . . ⊗ gn)
+ (g1(Dr − diag(Dr)) ⊗ g2E

r
2 ⊗ g3 ⊗ . . . ⊗ gn)

+ (g1diag(Dr) ⊗ g2 σ(Er
1) ⊗ g3 σ(T r) ⊗ . . . ⊗ gn)

+ (g1diag(Dr) ⊗ g2 σ(Er
2) ⊗ g3 ⊗ . . . ⊗ gn)

Now remember that g1(Dr−diag(Dr)) = g1Γr. Furthermore due to the definition
of the Domino, we have: σ(T r) = I and we simplify the sixth term. Furthermore
σ(Er

1) + σ(Er
2) = I and we can combine the sixth and seventh terms to obtain

after simplification:

(g1F1 ⊗ g2 ⊗ g3 ⊗ . . . ⊗ gn)
+ (g1 ⊗ g2F2 ⊗ g3 ⊗ . . . ⊗ gn)
+ (g1 ⊗ g2 ⊗ g3F3 ⊗ . . . ⊗ gn)
+ (g1Γr ⊗ g2E

r
1 ⊗ g3T

r ⊗ . . . ⊗ gn)
+ (g1Γr ⊗ g2E

r
2 ⊗ g3 ⊗ . . . ⊗ gn)

+ (g1diag(Dr) ⊗ g2 ⊗ g3 ⊗ . . . ⊗ gn)

Product Form Steady-State Distribution for SAN 119

Now we factorize the first and the last terms. Furthermore we add and subtract
the following term: (g1(Dr − diag(Dr)) ⊗ g2 ⊗ g3 ⊗ . . . ⊗ gn).

(g1(F1 + diag(Dr)) ⊗ g2 ⊗ g3 ⊗ . . . ⊗ gn)
+ (g1 ⊗ g2F2 ⊗ g3 ⊗ . . . ⊗ gn)
+ (g1 ⊗ g2 ⊗ g3F3 ⊗ . . . ⊗ gn)
+ (g1Γr ⊗ g2E

r
1 ⊗ g3T

r ⊗ . . . ⊗ gn)
+ (g1Γr ⊗ g2E

r
2 ⊗ g3 ⊗ . . . ⊗ gn)

− (g1(Dr − diag(Dr)) ⊗ g2 ⊗ g3 ⊗ . . . ⊗ gn)
+ (g1(Dr − diag(Dr)) ⊗ g2 ⊗ g3 ⊗ . . . ⊗ gn)

We factorize the first and the last term and we note that g1(Dr − diag(Dr)) =
g1Γr to simplify the sixth term:

(g1(F1 + Dr) ⊗ g2 ⊗ g3 ⊗ . . . ⊗ gn)
+ (g1 ⊗ g2F2 ⊗ g3 ⊗ . . . ⊗ gn)
+ (g1 ⊗ g2 ⊗ g3F3 ⊗ . . . ⊗ gn)
+ (g1Γr ⊗ g2E

r
1 ⊗ g3T

r ⊗ . . . ⊗ gn)
+ (g1Γr ⊗ g2E

r
2 ⊗ g3 ⊗ . . . ⊗ gn)

− (g1Γr ⊗ g2 ⊗ g3 ⊗ . . . ⊗ gn)

Note that the ordinary product is compatible with the tensor product (i.e.
(λA) ⊗ B = A ⊗ (λB)). We also remark that due to the definition of Domino
synchronization σ(Er

2) = Er
2 and σ(Er

1) + σ(Er
2) = I. Using the distributivity,

after cancellation we get:

(g1(F1 + Dr) ⊗ g2 ⊗ g3 ⊗ . . . ⊗ gn)
+ (g1 ⊗ g2(F2 − Γr σ(Er

1)) ⊗ g3 ⊗ . . . ⊗ gn)
+ (g1 ⊗ g2 ⊗ g3F3 ⊗ . . . ⊗ gn)
+ (g1Γr ⊗ g2E

r
1 ⊗ g3T

r ⊗ . . . ⊗ gn)

We add and we subtract (g1Γr ⊗ g2E
r
1 ⊗ g3 ⊗ . . . ⊗ gn). We factorize the second

term:
(g1(F1 + Dr) ⊗ g2 ⊗ g3 ⊗ . . . ⊗ gn)

+ (g1 ⊗ g2(F2 + Γr(Er
1 − σ(Er

1))) ⊗ g3 ⊗ . . . ⊗ gn)
+ (g1 ⊗ g2 ⊗ g3F3 ⊗ . . . ⊗ gn)
+ (g1Γr ⊗ g2E

r
1 ⊗ g3T

r ⊗ . . . ⊗ gn)
− (g1Γr ⊗ g2E

r
1 ⊗ g3 ⊗ . . . ⊗ gn)

We apply the assumption on the eigenvalue of Er
1 . We remark that Er

1 −σ(Er
1) =

Er − σ(Er) and that σ(T r) = I. After substitution we finally get the decompo-
sition we need:

(g1(F1 + Dr) ⊗ g2 ⊗ g3 ⊗ . . . ⊗ gn)
+ (g1 ⊗ g2(F2 + Γr(Er − σ(Er))) ⊗ g3 ⊗ . . . ⊗ gn)
+ (g1 ⊗ g2 ⊗ g3(F3 + ΓrΩr(T r − σ(T r))) ⊗ . . . ⊗ gn)

Now we can continue with the second Domino synchronization and factorize
the terms to obtain n tensor products. Each of them contains a product by
vector glMl which is zero due to the assumptions of the theorem. Therefore
(g1 ⊗ . . .⊗ gn)Q = 0 and the SAN has a product form steady state distribution.

120 J.M. Fourneau

4 Examples

We define some notation for the various matrices used to describe the SAN:

– I: the identity matrix,
– Upp: the matrix full of 0 except the main upper diagonal which is 1,
– Low: the matrix full of 0 except the main lower diagonal which is 1,
– I0: the identity matrix except the first diagonal element which is 0.
– C1: the null matrix except the first column whose elements are equal to 1.

4.1 Gelenbe’s Networks with Customer Triggered Movement

The concept of Generalized networks (G-networks for short) have been intro-
duced by Gelenbe in [13]. These networks contain customers and signals. In the
first papers on this topic, signals were also denoted as negative customers. Signals
are not queued in the network. They are sent into a queue, and disappear instan-
taneously. But before they disappear they may act upon some customers present
in the queue. As customers may, at the completion of their service, become sig-
nals and be routed into another queue, G-networks exhibit some synchronized
transitions which are not modeled by Jackson networks. Usually the signal im-
plies the deletion of at least one customer. These networks have a steady-state
product form solution under usual Markovian assumptions. Then the effects
have been extended to include the synchronization between three queues : a sig-
nal originated from queue i and which arrives into queue j triggers a customer
movement into queue k, if queue j is not empty. Gelenbe has proved that these
networks still have a product form solution under the same assumptions [14].
For the sake of simplicity, we assume that there is no arrival of signals from the
outside. We also restrict ourselves to networks where at the completion of their
services, the customers become signals to join the queue associated to the slave
automaton or leave the network.

We consider an infinite state space. Each automaton models the number of
positive customers in a queue. The signal are not represented in the states as
they vanish instantaneously. The local transitions are the external arrivals (rate
λl) and the departures to the outside (rate µl multiplied by probability dl). The
synchronization describes the departure of a customer on the master (the end
of service with rate µl and probability (1 − dl)), the departure of a customer on
the slave (a customer movement, if there is any), the arrival of a customer on
the relay (always accepted). More formally:

Ll = λl(Upp − I) + µldl(Low − I0),
Dr = µl(1 − dl)(Low − I0),
Er = Low and T r = Upp.

(12)

After substitution in the system considered in theorem 1, it must be clear
that matrix Ml is tridiagonal with constant diagonals. Thus, gl has a geometric
distribution with rate ρl:

ρl =
λl +

∑s
r=1 ΩrΓr1rl(r)=l

µl +
∑s

r=1 Γr1sl(r)=l

.

Product Form Steady-State Distribution for SAN 121

Of course, one must check that for all l, ρl is smaller than 1. Because of its
geometric distribution, gl is an eigenvector of operators Dr and Er. Finally, we
obtain: Ωr = ρsl(r) and Γr = ρmsr(r)µmsr(r)(1 − dmsr(r)), which is roughly the
generalized flow equation which has been found in [14] when the routing matrix
only contains one non zero entry.

4.2 Three Deletions

Consider the following model:

Ll = λl(Upp − I) + µldl(Low − I0),
Dr = µl(1 − dl)(Low − I0),
Er = T r = Low.

(13)

This SAN describes a network of queues where the three queues involved in
the synchronization delete one customer if there is any in the queue. However
the deletions of customer are ordered. The deletion in the relay only occurs if
the deletion in the slave was successful. Matrix Ml is tridiagonal with constant
diagonals. gl has a geometric distribution with rate ρl:

ρl =
λl

µl + +
∑s

r=1 ΩrΓr1rl(r)=l +
∑s

r=1 Γr1sl(r)=l
.

and Ωr = ρsl(r) and Γr = ρmsr(r)µmsr(r)(1 − dmsr(r)).

4.3 Jackson and Gelenbe’s Network

Of course it is possible to describe a Jackson network of queues as follows:

Ll = λl(Upp − I) + µldl(Low − I0),
Dr = µl(1 − dl)(Low − I0),
Er = Upp and T r = I.

(14)

Similarly a Gelenbe’s network with negative customers is described by:

Ll = λl(Upp − I) + µldl(Low − I0),
Dr = µl(1 − dl)(Low − I0),
Er = Low and T r = I.

(15)

And we can find easily the flow equations.

4.4 The Relay Jumps to Zero

Consider the following model:

Ll = λl(Upp − I) + µldl(Low − I0),
Dr = µl(1 − dl)(Low − I0),
Er = Low and T r = C1.

(16)

This SAN describes a network of queues. Each automaton models the number
of positive customers in a queue. The synchronization delete one customer in
the master and the slave and flushes out the relay. Matrix Ml is not tridiagonal
anymore but gl is still geometric and we have a product form result.

122 J.M. Fourneau

4.5 Networks with More Complex Effect

It is worthy to remark that matrices T r and Ll only appear in one equation.
Therefore, it is possible to find new results if we keep the geometric distribution
for gl and the matrices Dr and Er unchanged. Indeed, the first two equations
of the fixed point system are still verified for the eigenvector. And this gives
two relations between the eigenvalues Γr and Ωr and the rate of the geometric
distribution of gl.

Theorem 2. Assume that Dr = αLow and Er = Low, then for every matrices
Ll and T r which imply a geometric distribution for gl with rate ρl, the SAN
has a product form distribution if the flow equation in ρl has a solution whose
components are smaller than 1.

4.6 Product Form for PEPA Models

As SAN are closely related to Stochastic Process Algebra, the results we have
obtained here can be applied on PEPA models. Similarly, as some papers have
been published on PEPA models with product form steady state solution [15,17],
one may compare the approaches and the results even if it is not possible here
to define PEPA specifications.

Hillston and Thomas considered in [17] PEPA models which belongs to the
class of continuous-time Markov chains in competition studied by Boucherie [1].
The PEPA models are based on guarded transitions and the conditions estab-
lished by Boucherie can be algorithmically detected at the syntactic level while
the assumptions made by Boucherie need some modeling expertise. Boucherie’s
condition has been extended for SAN in [9,10] and are not related to the model
presented here. The conditions in [10] like the condition of Theorem 1 are mostly
numerical: they require to compute eigenvalues for some matrices and compare
them. However it may be possible that one can generalize the approach in [17]
to take into account this numerical approach at a high level.

Harrison and Hillston have also proved product form results for PEPA models
using reversibility theory [15]. To the best of our knowledge, the comparison
between this approach and results presented in [9,10] and in our paper remains
to be done.

5 Conclusions

Domino synchronization limited to three modules allow SAN to have a product
form steady-state distribution. This result is based on the synchronization de-
scription and some properties of the tensor sum and product. Our result holds
even if the underlying Markov chain is not reversible. Similarly, local balances
do not hold (at least for Gelenbe’s networks which are included in our model).
However, Domino synchronization are far less powerful for specification than the
usual ”Rendez-Vous”. For instance, they do not allow the blocking of the master
by the slave. More theoretically, the Domino synchronization with product form

Product Form Steady-State Distribution for SAN 123

is much more general than the three automata case we have presented here. It
remains to generalize to arbitrary size Domino synchronization and to explain
why they allow product form. Finally, one must consider functional transitions
(such as in [9,10,11]) and combine both approaches.

Acknowledgement. this work is partially supported by ANR grant SMS
(ANR-05-BLAN-0009-02).

References

1. Boucherie, R.: A Characterization of independence for competing Markov chains
with applications to stochastic Petri nets. IEEE Trans. Software Eng. 20(7), 536–
544 (1994)

2. Boujdaine, F., Fourneau, J.M., Mikou, N.: Product Form Solution for Stochastic
Automata Networks with synchronization. In: 5th Process Algebra and Perfor-
mance Modeling Workshop, Twente, Netherlands (1997)

3. Buchholz, P., Dayar, T.: Comparison of Multilevel Methods for Kronecker-based
Markovian Representations. Computing Journal 73(4), 349–371 (2004)

4. Dayar, T., Gusak, O., Fourneau, J.M.: Stochastic Automata Networks and Near
Complete Decomposability. SIAM Journal and Applications 23, 581–599 (2002)

5. Dayar, T., Gusak, O., Fourneau, J.M.: Iterative disaggregation for a class of
lumpable discrete-time SAN. Performance Evaluation, 2003 53(1), 43–69 (2003)

6. Donnatelli, S.: Superposed stochastic automata: a class of stochastic Petri nets
with parallel solution and distributed state space. Performance Evaluation 18, 21–
36 (1993)

7. Fernandes, P., Plateau, B., Stewart, W.J.: Efficient Descriptor-Vector Multiplica-
tions in Stochastic Automata Networks. JACM, 381–414 (1998)

8. Fourneau, J.M.: Domino Synchronization: product form solution for SANs. Studia
Informatica 23, 4(51), 173–190

9. Fourneau, J.M., Plateau, B., Stewart, W.: Product form for Stochastic Automata
Networks. In: Proc. of ValueTools 2007, Nantes, France (2007)

10. Fourneau, J.M., Plateau, B., Stewart, W.: An Algebraic Condition for Product
Form in Stochastic Automata Networks without Synchronizations. Performance
Evaluation (to appear, 2008)

11. Fourneau, J.M.: Discrete Time Markov chains competing over resources: product
form steady-state distribution. In: QEST 2008 (to appear, 2008)

12. Fourneau, J.M., Quessette, F.: Graphs and Stochastic Automata Networks. In:
Proc. of the 2nd International Workshop on the Numerical Solution of Markov
Chains, Raleigh, USA (1995)

13. Gelenbe, E.: Product form queueing networks with negative and positive customers.
Journal of Applied Probability 28, 656–663 (1991)

14. Gelenbe, E.: G-networks with triggered customer movement. Journal of Applied
Probability 30, 742–748 (1993)

15. Harrison, P., Hillston, J.: Exploiting Quasi-reversible Structures in Markovian
Process Algebra Models. Computer Journal 38(7), 510–520 (1995)

16. Hillston, J.: A compositional approach to Performance Modeling, Ph.D Thesis,
University of Edinburgh (1994)

17. Hillston, J., Thomas, N.: Product Form Solution for a Class of PEPA Models.
Performance Evaluation 35(3-4), 171–192 (1999)

124 J.M. Fourneau

18. Kloul, L., Hillston, J.: An efficient Kronecker representation for PEPA models. In:
de Alfaro, L., Gilmore, S. (eds.) PROBMIV 2001, PAPM-PROBMIV 2001, and
PAPM 2001. LNCS, vol. 2165. Springer, Heidelberg (2001)

19. Plateau, B.: On the Stochastic Structure of Parallelism and Synchronization Mod-
els for Distributed Algorithms. In: Proc. ACM Sigmetrics Conference on Measure-
ment and Modeling of Computer Systems, Austin, Texas (August 1985)

20. Plateau, B., Fourneau, J.M., Lee, K.H.: PEPS: A Package for Solving Complex
Markov Models of Parallel Systems. In: Proceedings of the 4th Int. Conf. on Mod-
eling Techniques and Tools for Computer Performance Evaluation, Majorca, Spain
(September 1988)

21. Plateau, B., Stewart, W.J.: Stochastic Automata Networks: Product Forms and
Iterative Solutions, Inria Report 2939, France

22. Lazar, A., Robertazzi, T.: Markovian Petri Net Protocols with Product Form So-
lution. Performance Evaluation 12, 66–77 (1991)

23. Stewart, W.J., Atif, K., Plateau, B.: The numerical solution of Stochastic Au-
tomata Networks. European Journal of Operation Research 86(3), 503–525 (1995)

State-Aware Performance Analysis with eXtended
Stochastic Probes

Allan Clark and Stephen Gilmore

University of Edinburgh, Scotland

Abstract. We define a mechanism for specifying performance queries which
combine instantaneous observations of model states and finite sequences of obser-
vations of model activities. We realise these queries by composing the state-aware
observers (called eXtended Stochastic Probes (XSP)) with a model expressed in
a stochastically-timed process algebra. Our work has been conceived in the con-
text of the process algebra PEPA. However the ideas involved are relevant to all
timed process algebras with an underlying discrete-state representation such as a
continuous-time Markov chain.

1 Introduction

When modelling complex systems we generally wish to make queries and therefore
must describe the set of states in which we are interested. The analysis in question may
be a steady-state query asking a question such as: “In the long-run what percentage
of its time does the server spend idle?” The set of states in which we are interested is
then the steady-set. Passage-time queries are often concerned with events, however the
query must still be specified as a set of states, which we will call the passage-set. To
perform a passage-time analysis the solver can extract the set of source states and the
set of target states from the passage-set. The set of source states is taken to be all of
those states in the passage-set which are the target of some transition whose source lies
outside the passage-set. Conversely the set of target states is taken to be the set of states
outside the passage-set which are the target of some transition whose source lies in the
passage-set.

More generally whether we are performing a steady-state or passage-time analy-
sis we will be interested in specifying the query-set. There are currently two kinds of
mechanism for specifying query-sets: state-specifications and activity-specifications.

We are interested in the robustness and portability of our query specifications. For
robustness we would like to ensure that our query specification remains correct when-
ever we make unrelated changes to our model. For portability we would like one query
specification to be used over several differing models. Additionally it is important that
we are able to make many different queries without needing to alter the model. We
have found that the above two query specification techniques alone are insufficient for
our aims. Additionally allowing the user to specify their queries using either is still not
sufficiently expressive. We have found it necessary to combine the two into one spec-
ification language which allows state-specifications to be intermixed within an activity
probe specification. This language we have called eXtended Stochastic Probes (XSP).

N. Thomas and C. Juiz (Eds.): EPEW 2008, LNCS 5261, pp. 125–140, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

126 A. Clark and S. Gilmore

Structure of this paper. The rest of this paper is structured as follows: section 2 dis-
cusses related work and section 3 formally introduces the two separate specification
techniques; state specifications and activity probes as well as formally introducing our
extension which allows the combination of both approaches. Section 4 provides details
of the conversion of extended probe specifications into our target language PEPA as
implemented in our PEPA compiler. A detailed example is provided in sections 5 and
6. Finally conclusions are presented in section 7.

2 Related Work

The use of a regular expression-like language to describe a probe component which is
automatically added to a PEPA model was studied by Katwala, Bradley and Dingle [1].
The addition of probe components has been a feature of the Imperial PEPA Compiler [2]
(now the International PEPA Compiler) since it was first developed and remains so in
the derivative work ipclib [3].

Stochastic probes describe activity-observations. We have previously extended this
formalism to locate activities within structured models [4]. We introduced immediate
actions into communicating local probes to convey state information without perturbing
the performance analysis which was being made. In the present work we add state-
observations to the existing stochastic probes language which specifies location-aware
activity-observations.

A widely-used language for describing logical properties of continuous-time Markov
chains is CSL (Continuous Stochastic Logic), introduced by Aziz, Sanwal, Singhal and
Brayton [5]. An application of CSL to a process algebra must first translate the higher-
level state information exposed to the user to the states of the Markov chain. The well-
formed formulae of CSL are made up of state formulae φ and path formulae ψ. The
syntax of CSL is below.

φ ::= true | false | a | φ ∧ φ | φ ∨ φ | ¬φ |
P��p[ψ] | S��p[φ]

ψ ::= X φ | φ UI φ | φ U φ

Here a is an atomic proposition, �� ∈ {<,≤, >,≥ } is a relational parameter, p ∈ [0, 1]
is a probability, and I is an interval of R. Derived logical operators such as implication
(⇒) can be encoded in the usual way.

The implementation of the CSL logic in the model-checker PRISM [6] is extended
with additional state-specifications called filters. An example is shown in the following
formula where

P>0.97[true UI φ2{φ1}]
determines whether the probability of, from a state satisfying the filter φ1, reaching a
state satisfying φ2 within interval I is greater than 0.97.

Because CSL can only describe states and not the events which cause state transi-
tions – namely actions – CSL (without filters) was extended with activity-specifications
by Baier, Cloth, Haverkort, Kuntz and Siegle [7] to provide the language asCSL. In
that work the authors added activity observations to a state-aware logic. This has re-
cently been further extended to provide the language CSLT A [8] by Donatelli, Haddad

State-Aware Performance Analysis with eXtended Stochastic Probes 127

and Sproston. This language allows properties referring to the probability of a finite
sequence of timed activities through the use of a timed automaton.

The XSP language presented here is close to the language which would be ob-
tained by extending asCSL with the state-filters used in PRISM. However it would
extend the language of asCSL+filters with observations of activities at locations within
a hierarchically-structured performance model. All prior activity-aware variants of CSL
(including asCSL and CSLT A) make observations of a Markov chain model without hi-
erarchical component structure. This entails that they cannot be used (say) to distinguish
arrivals to server 1 from arrivals to server 2 in the example below

Client ��
{arrive}

((
Server1 ��

L Network
) ‖ (Server2 ��

M Raid
))

but this distinction can be expressed in the language XSP.

3 State and Probe Specifications

The models which we consider consist of compositions of multiple copies of sequen-
tial components cooperating on shared activities. A state-specification is a predicate
involving expressions over the multiplicities of the sequential components in a system.
The expressions in the predicate may compare a multiplicity to a constant or to the
multiplicity of another component. Typical predicates test for the presence, absence
or abundance of a particular component but more complex arrangements are possible.
For example ClientWait > 2 × ServerReady specifies those states in which the number
of clients waiting is more than twice the number of ready servers. The full syntax for
state-specification equations is given in Figure 1(left).

An activity-specification is a labelled regular expression describing the sequence
of activities which lead into and out of the query-set. The labels start and stop are
used to indicate the activities which enter and exit the query-set respectively. Activity-
specifications are realised as stochastic probes which are automatically translated into
a component which is then attached to the model.

Probes may be attached globally to the entire model (thereby observing all of the
model behaviour) or locally to a specific component (therefore observing from the per-
spective of this component). The probe cooperates with the component to which it is
attached over all of the activities in its alphabet. It is important that the probe is always
willing to perform all of these activities in each of its local states in order that it does
not alter the behaviour of the model.

A very simple probe may specify the set of states between a begin and an end activity:
begin:start, end:stop. More complex queries are possible such as:

((pass, pass, pass)/send):start, send:stop

This specifies that if we observe three pass activities without observing a send activity
then the model has entered the query-set. When a send activity has been observed then
the model has left the query-set. The full syntax for activity-probe specifications is given
in Figure 1(right).

128 A. Clark and S. Gilmore

name := ident process name
pred := ¬pred not

| true | false boolean
| if pred

then pred
else pred conditional
| pred ∨ pred disjunction
| pred ∧ pred conjunction
| expr expression

expr := name multiplicity
| int constant
| expr relop expr comparison
| expr binop expr arithmetic

relop := = | � | > | <
| ≥ | ≤ relational operators

binop := + | − | × | ÷ binary operators

Pde f := name :: R locally attached probe
| R globally attached probe

R := activity observe action
| R1,R2 sequence
| R1 | R2 choice
| R:label labelled
| R n iterate
| R{m, n} iterate
| R+ one or more
| R∗ zero or more
| R? zero or one
| R/activity resetting
| (R) bracketed

R := . . . | {pred}R guarded

Fig. 1. The grammar on the left defines the syntax for state-specifications while the grammar
on the right defines the syntax for activity-probe-specifications. The grammar extension at the
bottom defines the additional syntax for eXtended Probe Specifications.

Activity probes have two abstract states, running and stopped. An abstract state of a
(component of a) model, is a set of states with a common property. When the probe is
in between the two labels start and stop the probe is said to be in the running state and
otherwise in the stopped state.

Probes are stateful components which advance to a successor state whenever an ac-
tivity is observed which is in the first-set of the probe. The first-set of a probe is the set
of activities which are enabled at the current position of the probe specification. For ex-
ample the probe (a|b),R can advance to a state represented by the probe R on observing
the activities a or b and its first-set is {a, b}. A given probe will self-loop on any activity
which is in the alphabet of the full probe but is not in the current first-set. This means
that the probe observes the occurrence of the activity and hence does not prevent the
model from performing it, but does not advance.

The novelty in the present paper is the combination of state-specifications, activity-
specifications and both local and global observations.

We do this by allowing a sub-probe of an activity-probe specification to be guarded
by a state-specification. Having already done the work of describing states earlier, the
additional syntax—shown in Figure 1(bottom)—is very light.

The meaning of the probe {p}R is that any activity which begins the probe R must
occur when the state of the model satisfies the state-specification predicate p. If this
predicate is not satisfied then the probe self-loops on the given activity. For example
the extended probe: {Server broken > 0}request : start, response : stop is similar to
a common query which analyses the response time between the two activities request
and response. Here though the initial observation of the request activity is guarded by
the state specification Server broken > 0 and hence all occurences of request will be

State-Aware Performance Analysis with eXtended Stochastic Probes 129

ignored by this probe unless there is at least one process in the Server broken state. This
could be used to analyse the response time in the specific case that at least one server is
down.

In this paper we will express models in the stochastic process algebra PEPA [9]
extended with functional rates [10] (known as “marking-dependent rates” in Petri nets).
The definition P

def
= (α, f).P′ denotes a component P which performs an activity α at an

exponentially-distributed rate determined by evaluating the function f in the current
model state. After completing activity α, P behaves as P′.

Another model component Q
def
= (α,
).Q′ could cooperate with P on activity α thus:

P ��
{α} Q

We write P ‖ Q when the cooperation set is empty and P[3] as an abbreviation for
P ‖ P ‖ P. The component R

def
= (α, rα).R′ + (β, rβ).R′′ chooses to perform activity α

with rate rα with probability rα/(rα + rβ), and β similarly. The process a.P performs an
immediate action a and evolves to P.

4 Implementation

The XSP language is implemented in the International PEPA Compiler (ipc), a stand-
alone modelling tool for steady-state and transient analysis of PEPA models. When
presented with a PEPA model and an XSP probe, ipc first translates the probe specifica-
tion into a PEPA component. This translated component is then attached to the model to
form a new model. It is this subsequent model which ipc then translates into a Markov
chain representing the augmented model and solves the resulting Markov chain for the
stationary probability distribution. In the case of a passage-time analysis uniformisa-
tion [11,12] is then used to compute the probability density and cumulative distribution
functions for the passage across the XSP probe.

Translating probe specifications into valid PEPA components and attaching them
to the model before any compilation of the model is performed has several advantages.
The user may provide several probe specifications which are translated and added to the
model in turn resulting in subsequent augmented models. Thus additional probes may
refer not only to activities (and immediate actions) performed by the original model
but also those performed by other probes. In this way probes may use immediate ac-
tions to perform immediate communication between probe components. Furthermore,
although in this paper we have focussed on translating the model augmented with the
translated probe using ipc via its Markov Chain representation, we could also analyse
the augmented model using other techniques developed for analysing PEPA models,
notably stochastic simulation and translation to ordinary differential equations[13] al-
lowing us to cope with models with much larger state spaces. Finally the static analysis
used to reject (or warn about) suspect PEPA models can now be run over the entire
augmented model including the translated probe components providing further assur-
ance that we have not made a mistake with our specification. This is in addition to some
sanity checking over the probe specification itself.

130 A. Clark and S. Gilmore

The implementation of XSP follows a tradition of translating regular-expression lan-
guages to finite-state automata. We first translate the probe specification into a non-
deterministic finite-state automaton. This cannot itself be translated directly into a PEPA
component so we next translate this into a deterministic finite automaton. Having done
this the self-loops may then be added to each state (recall from section 3 that self-loops
must be added to each state of the probe to avoid the probe affecting the behaviour of
the model).

Although for some probe specifications it is unavoidable that we increase the state
space of the model we wish to keep the cost of this as low as possible. With this in mind
the translated deterministic finite automata is minimised. It is the minimised DFA with
the addition of the self-loops which can be translated directly into a PEPA model. This
final step is a trivial re-formatting stage – we must only take into account whether or not
the model performs each observed action as a timed activity or an immediate action. In
the case of the former the probe component must passively observe the activity at rate

 and in the case of the latter it is simply added itself as an immediate action.

Probe definitions, and in particular local probe definitions, may use labels to commu-
nicate important events to a master probe which the user provides. The :start and :stop
labels are special cases of this communication whereby the event is the transition of the
probe into the abstract running or stopped states. All communication labels are imple-
mented as immediate actions so as not to distort the behaviour of the model. Care must
be taken not to add self-loops to a state in which immediate communication is possi-
ble in case the observed action on which the self-loop is performed is itself immediate,
which would lead to non-determinism.

The guards on the activities of a probe in an extended probe specification are im-
plemented as guards on the activities of the translated probe component. These in turn
may be implemented as functional rates in which the rate is zero if the predicate is false.
Care must be taken when adding the self-loops. Previously a self-loop on activity x in
the alphabet of the probe was added to a given state if activity x could not currently be
performed to advance the state of the probe. Now whenever it is possible for a guarded
activity x to advance the state of the probe we must add a self-loop for the case in which
the guard is false. However it must not self-loop whenever the guard is true hence the
self-loop is itself guarded by the negation of the guard predicate.

To attach the translated probe component to the model we synchronise over the al-
phabet of the probe. For a global probe it is trivial to attach since we cooperate with the
whole model. For the global probe, if Probe is the name given to the translated PEPA
component in the initial state of the probe and System is the original system equation
then the augmented model’s system equation is given by:

Probe ��
L System

where L is the alphabet of the probe. A local probe P :: R is attached by descending
through the cooperations (and hiding operators) which make up the System compo-
nent. We attach the probe to the leftmost occurrence of P splitting an array if required.
Therefore if System is represented by the cooperation (L ��

M
P[4]) ��

N
Q then the system

equation of our augmented model becomes:
(L ��

M
((Probe ��

L
P) ‖ P[3])) ��

N
Q

State-Aware Performance Analysis with eXtended Stochastic Probes 131

5 An Example Scenario

Our example scenario involves the arbitration of many processes accessing a shared
resource. Here we are considering a symmetric multi-processing architecture in which
there are several processors which must be allowed access to a shared memory. However
the models and query specifications can be applied to similar scenarios involving access
by many clients to a shared resource, for example a wireless network in which the
clients must compete to send or receive over a shared channel.

With our models we wish to compare choices for arbitration. Here we will compare a
round-robin scheme with a first-come, first-served queueing system. In the round-robin
scheme each client is given the chance to use the shared resource in turn, at each such
turn the client may choose to pass up the opportunity or it may use the resource. In
a first-come, first-served queue a client continues to work without the shared resource
until it is required and then signals its interest in access to the shared resource. At this
point the client is put to the end of the queue of clients and must wait until all the clients
ahead of it in the queue have finished with their turn at the resource before being granted
access.

We will be concerned with the time it takes from after a specific client has performed
some internal work (indicating that it is now ready to use the shared resource) until after
it has completed a send. Here the send activity is used as the name for accessing the
shared resource and can be thought of as either sending data to the shared memory in
a symmetric multi-processor environment or using the shared channel to send data in a
wireless network.

5.1 The Round-Robin Model

For the round-robin scheme we model the resource as a token which may be in one
of several places where each place represents a slot in which exactly one client may
use the resource. A client is able to perform the work activity before being able to use
the resource. It must cooperate with the resource and can of course only do this if the
token of the resource is in the correct place. In addition to being able to perform a work
activity the client may pass up the opportunity to use its slot. The Client component
then is modelled as:

Client
def
= (work,work rate).Wait
+ (pass,
).Client

Wait
def
= (send, send rate).Client

The resource is modelled by the Token process. The Token when in position zero may
cooperate with the client over the send or the pass activity. To model each of the other
places for the token we could model more clients. Instead we assume that the token
moves on from each place at a given rate which encompasses both the possibilities that
the respective client sends or passes. In position i the token is modelled by:

Tokeni
def
= (delay, delay rate).Tokeni−1

When the token is in position zero it is defined as:
Token0

def
= (send,
).TokenM

+ (pass, pass rate).TokenM

132 A. Clark and S. Gilmore

where M is the number of other places/clients on the network. The main system equa-
tion is defined to be:

Client ��
L Token0 where L = {send, pass}

Figure 2 depicts the entire state space of the model where M is set to four.

0 Client ��L Token0

1 Wait ��L Token1

2 Wait ��L Token2

3 Wait ��L Token3

4 Wait ��L Token4

5 Wait ��L Token0

6 Client ��L Token1

7 Client ��L Token2

8 Client ��L Token3

9 Client ��L Token4

0

5
work

9pass

1

delay

2
delay3 delay4

delay
send

6

delay

work

7

work

delay8

work

delay

work

delay

Fig. 2. States of the round-robin model with a passage-time analysis states marked

5.2 The Queue Model

The queue model is a little more complex since the client we are analysing may join
the queue at any time but must only be served when it is at the head of the queue. The
queue is modelled in a similar fashion to the Token process. It may be in one of M states
Queuei where i is the current length of the queue.

The client is now modelled as being in a state of working or in one of a set of M states
Clienti each of which corresponds to a position in the queue. When the client performs
the work activity and is ready to use the shared resource it cooperates with the Queue
process over an action which indicates into which state the client should proceed. Only
once the client is in state Client0 can it perform the send activity which will end our
passage of interest. Again the other clients in the model may be modelled explicitly but
here we allow the queue to move from state Queuei to state Queuei+1 at the (functional)
rate (M− i−Client)×work rate since when there are i clients in the queue there will be
M − i clients which may join the queue. We subtract one from that if the queried client
is not in the queue since this performs its own work activity to join the queue. The full
model is shown in the appendix.

5.3 The Random Model

The random model is used for comparison. The random scheme operates in a similar
fashion to the queue scheme, except that there are a number of clients in the queue and
the client which is given access to the shared resource is entirely random. It may be the
client that was the first to enter the queue but it may be the client that was last to enter
the queue.

State-Aware Performance Analysis with eXtended Stochastic Probes 133

In this model we do model the other clients. The client is defined as for the round-
robin model except that it need not perform a pass activity.

Client
def
= (work,work rate).Wait

Wait
def
= (send,
).Client

The queue as before may be in one of i states representing how many clients are in
the queue. The queue now cooperates with a random waiting client to perform the send
activity or a random working client to perform a work activity. The queue with i waiting
clients is defined as:

Queuei
def
= (work,
).Queuei+1
+ (send, send rate).Queuei−1

In position zero the queue cannot perform a send activity and cannot perform a work
activity when the queue is full. Finally the system definition is given by:

Client[5] ��
{work,send}Queue0

5.4 The Passage-Time Analysis

With these models we wish to analyse the expected time it takes for the resource to
be granted to the client once the client is ready. For this we wish to analyse from after
a work activity has been performed until after a send activity has been performed. We
therefore must identify the passage-set. That is, the set of states which lie between those
two events.

In Figure 2 the states in the passage-set for this particular query are identified using
double circles.

To specify this set using a state-specification we must use our knowledge of the
system to identify the conditions which hold at all of the states in the passage-set.

For the round-robin model this is simply when the client is in the Wait state.
Wait = 1

A similar specification also works for the random model with the caveat that we must
specify which Client we consider. For the queue model it is whenever the client is in
any of the queue states.

Client1 = 1 ∨ Client2 = 1 ∨ Client3 = 1 ∨ Client4 = 1 ∨ Client5 = 1
To specify this query using an activity probe we use the two activities themselves as the
begin and end events for the probe. The probe definition is given as:

Client :: work:start, send:stop
Note that this same probe works for all three models. For the round-robin and queue
models it is not strictly necessary for us to attach the probe to the Client component
since there is only one client component which may perform the observed activities.
However doing so leads to a more robust probe as evidenced by the fact that the same
probe can be used for the random model in which there are additional client processes.

Having performed this analysis for all three models we can compare the speed
with which each arbitration method allows a waiting client to use the shared resource.
Figure 3 shows a comparison of both the cumulative distribution function and the prob-
ability density function for the passage-time queries on the three models representing
the three arbitration schemes. These functions have been evaluated by applying the uni-
formisation procedure [11,12] to the CTMC which is generated from the PEPA model.

134 A. Clark and S. Gilmore

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10

P
ro

b

Time

Comparison of passage-time CDF based on start conditions

Round-Robin
Queue

Random
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 1 2 3 4 5 6 7 8 9 10

P
ro

b

Time

Comparison of passage-time PDF based on start conditions

Round-Robin
Queue

Random

Fig. 3. Comparison between the passage-time results for the three models

From the results we can see that the queue and random models perform very similarly
and both outperform that of the round-robin scheme.

The robustness of the query specification in general depends on what the modeller
is likely to modify. In our example above the state-specification is vulnerable to any
change in the model which increases the number of states in which the client may be in
either the abstract state of ‘waiting’ or the abstract state of ‘working’. The abstract state
of ‘waiting’ in our model corresponds to exactly one state of the client, namely: Wait.
Similarly the abstract state of ‘working’, which is used to specify that the send activity
has completed, maps to exactly one component state, namely: Client. If the model is
modified such that either of these two mappings from abstract state to a concrete set of
states is disturbed then the state specification will be invalid and must be revised.

In contrast the activity probe need not be modified since there could for example
be any number of unobserved activities and associated intermediate states between the
work and the send activities. However if we modify the set of activities which may
cause the model to transition between the abstract states then we must revise our probe
specification. For example above there were only two activities which the Token0 com-
ponent may perform to become a Token4 component, namely : pass and send. However
if this were to change then our probe specification would be invalid and would require
updating.

5.5 Splitting the Analysis

We may wish to partition the passage-time results we have obtained for our three mod-
els to enable us to report the expected time the client has to wait depending on the state
of the model at the time at which the client becomes ready to use the shared resource.
So for example in the round-robin model above we may wish to ask the question: “What
is the expected time between the client performing a work activity and the client per-
forming a send activity given that the work activity occurs when the token process is
in state Token4?” This question may be of particular interest because it represents the
worst case scenario. We have shown that the overall performance in the general case of
the round-robin scheme is worse than that of the queue and random schemes. However
it may be that the round-robin scheme has less erratic performance in that it matters
less at what time the client becomes ready to use the shared resource. It may be that

State-Aware Performance Analysis with eXtended Stochastic Probes 135

the worst case performance for the round-robin scheme is better than that for both the
queue and random schemes. This may be of particular interest in say a network, where
traffic can become congested at particular times and hence the worst case performance
is of more interest than the average case performance.

To write this exact query as a state-specification we must resort to specifying the
source set and the target set explicitly. This is because if we specify the states as a
passage-set it will include the states where the token is in places 1. . . 3, while the client
is still waiting. Clearly these states are reachable by a transition from a state outside
the passage-set. In fact specifying the passage-set in this manner would give identical
results to analysing the time the client must wait regardless of when the work activity
was completed. With this in mind our source and target sets for the round-robin model
worst case scenario are specified respectively by:

source : Wait = 1 ∧ Token4 = 1
target : Client = 1

Note however that it is a little unsatisfactory that we had to know so much about the
behaviour of the model. Even if one considers this a good thing – modellers should
know about the behaviour of their models – the query specification is very fragile in that
if we modify our model it is likely that this query specification must also be updated.
In addition the target set is larger than necessary. This will not affect the results of
the analysis but may cause the analysis time to increase. Again a very similar state-
specification can be used for the random model.

For the queue model worst case scenario analysis we can use our knowledge of the
system to make our state specification simpler than in the average case, this is because
there are fewer source states. Our state query is written as:

source : Client5 = 1
target : Client = 1

To write this query as an activity probe we must identify a sequence of activities
which will place the model in the source-set and the sequence of activities which will
complete the passage (from a source state). Specifying this using an activity probe
means that the query need not be split up. This is because the probe is in the abstract
running state only when it has passed through a source state. This means that we need
not split our specification into two separate ones however the drawback is that the state
space is increased. Our query for the round-robin model is specified by:

Client :: ((pass|send),work)/delay:start, send:stop
The (pass|send) component ensures that the token has moved to state Token4 before we
observe the work activity. By restricting the delay activity (with /delay) we assert that
the probe will not move past the start label unless the sequence ending with the work
occurrence does not contain a delay activity. This in turn ensures that the token is in the
state Token4 when the probe transitions to running. If a delay is observed this resets the
probe which must then wait to observe a pass or send once again.

The state space is increased because there are states in the passage which must be
duplicated. For example the state in which the token is in state Token3 and the client is
in state Wait is duplicated since the probe component may be in either the running or
the stopped state depending on whether the given state was reached via a source-state.

136 A. Clark and S. Gilmore

For both the random model and the queue model specifying this condition as an ac-
tivity probe is particularly difficult. In the following section we detail a far more portable
and robust method of obtaining these analysis results, namely the use of eXtended Sto-
chastic Probes (the XSP language).

6 Using eXtended Stochastic Probes

In the previous section we discussed the two main methods for specifying a query-set.
Both have advantages and disadvantages and can be used in different circumstances.
We used these to obtain a passage-time analysis and then proceeded to split this into
distinct queries depending on the state of the model when the passage is begun. We
have shown that either of the two methods alone are sometimes unsatisfactory. In this
section we provide the same split queries using the combined approach, eXtended Sto-
chastic Probes. The following probe can be used on the round-robin model to analyse
the passage in the worst case when the token is as far away as possible.

Client :: {Token4 = 1}work:start, send:stop
This probe will only be started by an observation of the Client performing a work ac-
tivity if the token is currently in the state Token4. All other occurrences of the work
activity will be ignored.

To specify the same worst case scenario query for the queue we can specify the
extended probe:

Client :: {Queue4 = 1}work:start, send:stop
This specification works in exactly the same way. The only difference is the name of
the state of the resource in the worst case scenario. For the random model the probe is
exactly the same.

Without changing the models we can make additional queries corresponding to all
of the different possible states of the resource at the time at which the client becomes
ready to make use of the shared resource. In the case of the round-robin scheme this is
the different places that the token may be in. In the case of queue and random models
this is the length of the queue. We provide the probes:

Client :: {TokenN = 1}work:start, send:stop
Client :: {QueueN = 1}work:start, send:stop

The graphs in Figure 4 show the cumulative distribution and probability density func-
tions of the passage-time responses given by restricting the probe to the conditions of
the shared resource.

6.1 Discussion of Results

With the basic analyses we determined that the average case response-time was worst
for the round-robin scheme and very similar for the queue and random schemes. The
results for the individual circumstances for the round-robin and the queue models are
identical. This is because in both cases the number and rates of the timed activities
that we must observe between the source and target are identical for each equivalent
circumstance. For example when the queue is empty and the token is in the correct
place both models are only measuring one activity, namely the send activity. This tells

State-Aware Performance Analysis with eXtended Stochastic Probes 137

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10

P
ro

b

Time

Comparison of the pdf functions for the round-robin model

whenever
Token0
Token1
Token2
Token3
Token4

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10

P
ro

b

Time

Comparison of the cdf functions for the round-robin model

whenever
Token0
Token1
Token2
Token3
Token4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9 10

P
ro

b

Time

Comparison of the pdf functions for the queue model

whenever
Empty

Queue1
Queue2
Queue3
Queue4

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10

P
ro

b

Time

Comparison of the cdf functions for the queue model

whenever
Empty

Queue1
Queue2
Queue3
Queue4

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10

P
ro

b

Time

Comparison of the pdf functions for the random model

whenever
Empty

Queue1
Queue2
Queue3
Queue4

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10

P
ro

b

Time

Comparison of the cdf functions for the random model

whenever
Empty

Queue1
Queue2
Queue3
Queue4

Fig. 4. Graphs of the PDF and CDF functions for the split passage-time results for the three
models

us that the reason the average case is worse for the round-robin model is because the
unfavourable cases happen more frequently than for the queue model. This may only be
the case because of the particular rate values which we have chosen and we may wish
to change those rates to see if we could make the round-robin model outperform the
queue model (in the average case). Indeed one should perform these experiments with
varying rates for both models as we have previously done using a distributed computing
platform to analyse the separate instances of each model [14].

In the case of the random model we can see that although the average case perfor-
mance is very similar to that of the first-come, first-served queue the performance is
actually much less varied. This is because for each state of the queue at the time of the
client becoming ready to use the resource there are still more paths to the target states
over which to average out the performance. For example if the client becomes ready
when the queue is empty this is no guarantee that our client will be the next client to
use the resource. Similarly if the queue is full we may still be the next client to use the
resource. The random queue may have some other less desirable properties, for example
a client may wait in the queue while arbitrarily many other clients are processed ahead

138 A. Clark and S. Gilmore

of it. However our results show that – at least for the parameters we have specified – a
client is highly unlikely to spend a long time in the queue.

7 Conclusions

We have described an extension – eXtended Stochastic Probes – to the language of
stochastic probes. Our extension allows the modeller to refer to the states of components
which are located in a hierarchically-structured performance model expressed in the
stochastic process algebra PEPA.

We consider state-specifications alone to be insufficient since they cannot be used
to distinguish states based on the activities which have been performed to reach that
state. Sometimes to perform the desired analysis we must increase the state-space of
the model and state-specifications offer no way to do this automatically. Activity probe
specifications are also insufficient for all purposes and in particular are poor at describ-
ing states which represent a balancing of activities. This is a frequent kind of query such
as “how likely is the server to be operational?” which may be the result of a balance
of ‘break’ and ‘repair’ activities. Finally allowing either state specifications or activity
probes is still not an acceptable solution. Situations which call for a combination of
the two approaches arise when the modeller wishes to combine observations with state
descriptions. A common example of such a combination is to ask about the response
time when the request is made at a time when a particular system component is in a
particular (abstract) state. A standard query is: “What is the response time when at least
one of the servers is broken”.

We have shown an example consisting of three models describing similar scenarios
but each using different modelling techniques. In the round-robin and queue models
we have represented only the client component that we wish to analyse while in the
random model all of the clients in the system were represented explicitly. The queue
model makes use of immediate actions and functional rates. Despite this the extended
probe specifications we used to split-up our passage-time analyses were portable across
the three models.

Our language of extended probe specifications has been fully implemented in the
ipclib library used and distributed with the International PEPA Compiler. This is avail-
able for download as open source software from http://www.dcs.ed.ac.uk/pepa/
tools/ipc.

Acknowledgements. The authors are supported by the EU FET-IST Global Computing 2
project SENSORIA (“Software Engineering for Service-Oriented Overlay Computers”
(IST-3-016004-IP-09)).

References

1. Argent-Katwala, A., Bradley, J., Dingle, N.: Expressing performance requirements using reg-
ular expressions to specify stochastic probes over process algebra models. In: Proceedings of
the Fourth International Workshop on Software and Performance, Redwood Shores, Califor-
nia, USA, pp. 49–58. ACM Press, New York (2004)

http://www.dcs.ed.ac.uk/pepa/
tools/ipc

State-Aware Performance Analysis with eXtended Stochastic Probes 139

2. Bradley, J., Dingle, N., Gilmore, S., Knottenbelt, W.: Derivation of passage-time densities
in PEPA models using IPC: The Imperial PEPA Compiler. In: Kotsis, G. (ed.) Proceedings
of the 11th IEEE/ACM International Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunications Systems, University of Central Florida, pp. 344–351.
IEEE Computer Society Press, Los Alamitos (2003)

3. Clark, A.: The ipclib PEPA Library. In: Harchol-Balter, M., Kwiatkowska, M., Telek, M.
(eds.) Proceedings of the 4th International Conference on the Quantitative Evaluation of
SysTems (QEST), pp. 55–56. IEEE, Los Alamitos (2007)

4. Argent-Katwala, A., Bradley, J., Clark, A., Gilmore, S.: Location-aware quality of service
measurements for service-level agreements. In: Barthe, G., Fournet, C. (eds.) TGC 2007.
LNCS, vol. 4912, pp. 222–239. Springer, Heidelberg (2008)

5. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model-checking continuous-time Markov
chains. ACM Trans. Comput. Logic 1, 162–170 (2000)

6. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A tool for automatic verifi-
cation of probabilistic systems. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS,
vol. 3920, pp. 441–444. Springer, Heidelberg (2006)

7. Baier, C., Cloth, L., Haverkort, B., Kuntz, M., Siegle, M.: Model checking action- and state-
labelled Markov chains. In: DSN ’04: Proceedings of the 2004 International Conference on
Dependable Systems and Networks, Washington, DC, USA, p. 701. IEEE Computer Society,
Los Alamitos (2004)

8. Donatelli, S., Haddad, S., Sproston, J.: CSLT A: an Expressive Logic for Continuous-Time
Markov Chains. In: QEST 2007: Proceedings of the Fourth Interational Conference on Quan-
titative Evaluation of Systems, Washington, DC, USA, pp. 31–40. IEEE Computer Society,
Los Alamitos (2007)

9. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge University
Press, Cambridge (1996)

10. Hillston, J., Kloul, L.: An efficient Kronecker representation for PEPA models. In: de Alfaro,
L., Gilmore, S. (eds.) PAPM-PROBMIV 2001. LNCS, vol. 2165, pp. 120–135. Springer,
Heidelberg (2001)

11. Grassmann, W.: Transient solutions in Markovian queueing systems. Computers and Opera-
tions Research 4, 47–53 (1977)

12. Gross, D., Miller, D.: The randomization technique as a modelling tool and solution proce-
dure for transient Markov processes. Operations Research 32, 343–361 (1984)

13. Hillston, J.: Fluid flow approximation of PEPA models. In: Proceedings of the Second In-
ternational Conference on the Quantitative Evaluation of Systems, Torino, Italy, pp. 33–43.
IEEE Computer Society Press, Los Alamitos (2005)

14. Clark, A., Gilmore, S.: Evaluating quality of service for service level agreements. In: Brim,
L., Leucker, M. (eds.) Proceedings of the 11th International Workshop on Formal Methods
for Industrial Critical Systems, Bonn, Germany, pp. 172–185 (2006)

A. The Full Queue Model

A.1. The Client Behaviour

This component represents the system workload.

140 A. Clark and S. Gilmore

Client
def
= (work,work rate).ClientQ
+ (delay,
).Client

ClientQ
def
= place0.Client1 + place1.Client2 + place2.Client3
+ place3.Client4 + place4.Client5

Client1
def
= (delay,
).send.Client

Client2
def
= (delay,
).Client1

Client3
def
= (delay,
).Client2

Client4
def
= (delay,
).Client3

Client5
def
= (delay,
).Client4

A.2. The Queue Component

This model component has the responsibility of correctly implementing the intended
first-in first-out behaviour of the queue. It ensures that the functional rates are correctly
evaluated by counting the number (either 0 or 1) of components in the Client state.

Queue0
def
= (join,work rate × 4).Queue1
+ place0.Queue1

Queue1
def
= (join,work rate × (4 − Client)).Queue2
+ place1.Queue2
+ (delay, send rate).Queue0

Queue2
def
= (join,work rate × (3 − Client)).Queue3
+ place2.Queue3
+ (delay, send rate).Queue1

Queue3
def
= (join,work rate × (2 − Client)).Queue4
+ place3.Queue4
+ (delay, send rate).Queue2

Queue4
def
= (join,work rate × (1 − Client)).Queue5
+ place4.Queue5
+ (delay, send rate).Queue3

Queue5
def
= (delay, send rate).Queue4

A.3. The System Equation

Finally, the model components are composed and required to cooperate over the activi-
ties in the cooperation set.

Client ��
L Queue0

where L = {delay, place{0..4}}

Natural Language Specification of

Performance Trees

Lei Wang, Nicholas J. Dingle, and William J. Knottenbelt

Department of Computing, Imperial College London,
180 Queen’s Gate, London SW7 2BZ, United Kingdom

{lw205,njd200,wjk}@doc.ic.ac.uk

Abstract. The accessible specification of performance queries is a key
challenge in performance analysis. To this end, we seek to combine the
intuitive aspects of natural language query specification with the expres-
sive power and flexibility of the Performance Tree formalism. Specifi-
cally, we present a structured English grammar for Performance Trees,
and use it to implement a Natural Language Query Builder (NLQB) for
the Platform Independent Petri net Editor (PIPE). The NLQB guides
users in the construction of performance queries in an iterative fashion,
presenting at each step a range of natural language alternatives that are
appropriate in the query context. We demonstrate our technique in the
specification of performance queries on a model of a hospital’s Accident
and Emergency department.

Keywords: Performance requirements specification; Natural language;
Performance Trees; Performance analysis.

1 Introduction

Performance is a vital consideration for system designers and engineers. Indeed,
a system which fails to meet its performance requirements can be as ineffectual
as one which fails to meet its correctness requirements. Ideally, it should be
possible to determine whether or not this will be the case at design time. This
can be achieved through the construction and analysis of a performance model of
the system in question, using formalisms such as queueing networks, stochastic
Petri nets and stochastic process algebras.

One of the key challenges in performance analysis is to provide system de-
signers with an accessible yet expressive way to specify a range of performance-
related queries. These include performance measures, which are directed at nu-
merical performance metrics (e.g. “In a hospital, what is the utilisation of the
operating theatre?”), and performance requirements, which indicate conformity
to a QoS constraint (e.g. “In a mobile communications network, is the time taken
to send an SMS message between two handsets less than 5 seconds with more
than 95% probability?”).

Formalisms such as Continuous Stochastic Logic (CSL) [3,4] provide a concise
and rigorous way to pose performance questions and allow for the composition

N. Thomas and C. Juiz (Eds.): EPEW 2008, LNCS 5261, pp. 141–151, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

142 L. Wang, N.J. Dingle, and W.J. Knottenbelt

of simple queries into more complex ones. Such logics can be somewhat daunting
for non-expert users; indeed, a study by Grunkse [9] found that industrial users
attempting to specify requirements sometimes put forward formulae that were
syntactically incorrect. Even for those comfortable with their use, there still
remains the problem of correctly converting informally-specified requirements
into logical formulae. Further, CSL is limited in its expressiveness, since it is
unable to reason about certain concepts such as higher moments of response
time.

Performance Trees [14,15] were recently proposed as a means to overcome
these problems. These are an intuitive graphical formalism for expressing per-
formance properties. The concepts expressible in Performance Tree queries are
intended to be familiar to engineers and include steady-state measures, passage
time distributions and densities, their moments, action frequencies, convolutions
and arithmetic operations. An important concern during the development of Per-
formance Trees was ease of use, resulting in a formalism that can be straightfor-
wardly visualised and manipulated as hierarchical tree structures.

Another approach for the accessible specification of performance queries is
the use of natural language, whereby users specify their queries textually before
they are automatically translated into logical formulae. This allows users to
exploit the power of logical formalisms without requiring in-depth familiarity and
also minimises the chances of misspecification. Prior work has focused on both
unstructured [10] and structured [8,9,12,13] natural language query specification,
albeit mostly in the context of correctness – rather than performance – analysis.

Unstructured natural language specification allows a user to freely enter sen-
tences which must then be parsed and checked before being converted into a
corresponding performance property. Although this is perhaps the most intu-
itive query specification mechanism, it must incorporate strategies for resolving
ambiguities and context-specific expressions. The conversion process is there-
fore often iterative, with the user refining their natural language expression in
response to the checking until it can be successfully converted into a property.

By contrast, structured natural language specification presents users with a
set of expressions which can be composed together in accordance with a pre-
defined structured grammar. If the same grammar is also defined for the logic
into which the query will be converted (e.g. as in [9]), the conversion process is
relatively straightforward. The main advantage of such structured specification
is therefore that there is less “trial and error” involved in forming a query: the
user’s choices are limited to those provided by the grammar and so they can
only construct a natural language query which will always convert directly into
a logical formula.

In this paper, we present a structured natural language query specification
mechanism for Performance Trees to further improve their accessibility. The
grammar of this structured mechanism is provided by the syntax of Performance
Trees, which enables a structured natural language query to be converted into
a Performance Tree and then evaluated using the existing Performance Tree
evaluation architecture [6]. Furthermore, taken together, the natural language

Natural Language Specification of Performance Trees 143

and Performance Tree representations provide mutual validation, allowing the
user to ensure that their queries capture exactly the performance properties of
interest.

The rest of this paper is organised as follows. Section 2 provides a brief
overview of Performance Trees and the tool support for their evaluation. Sec-
tion 3 then presents our structured grammar for the natural language represen-
tation of Performance Trees and describes its implementation within the Natural
Language Query Builder (NLQB), a module for the Platform Independent Petri
net Editor (PIPE) [1,5]. Section 4 demonstrates the use of the NLQB in a case
study of a hospital’s Accident and Emergency unit. Section 5 concludes and
discusses future work.

2 Performance Trees

Performance Trees [14,15] are a formalism for the representation of performance-
related queries. They combine the ability to specify performance requirements –
i.e. queries aiming to determine whether particular properties hold on system
models – with the ability to extract performance measures – i.e. quantifiable
performance metrics of interest.

A Performance Tree query is represented as a tree structure consisting of nodes
and interconnecting arcs. Nodes can have two kinds of roles: operation nodes
represent performance-related functions, such as the calculation of a passage
time density, while value nodes represent basic concepts such as a set of states,
an action, or simply numerical or Boolean constants.

Complex queries can be easily constructed by connecting operation and value
nodes together. The formalism also supports macros, which allow new concepts
to be created with the use of existing operators, and an abstract state-set spec-
ification mechanism to enable the user to specify groups of states relevant to a
performance measure in terms of the corresponding high-level model (whether
this be a stochastic Petri net, queueing network, stochastic process algebra etc.)

Performance Trees have been fully integrated into the Platform Independent
Petri net Editor (PIPE), thus allowing users to design Generalised Stochastic
Petri Net (GSPN) [2] models and to specify relevant performance queries within
a unified environment. PIPE communicates with an Analysis Server which em-
ploys a number of (potentially parallel and distributed) analysis tools [7,11] to
calculate performance measures. These include steady-state measures, passage
time densities and quantiles, and transient state distributions.

3 Structured Grammar for Performance Tree
Specification

The current Performance Query Editor incorporated into PIPE requires users to
be familiar with Performance Tree nodes (including their graphical representa-
tions and semantics). Because of this, a “drag and drop” graphical approach to

144 L. Wang, N.J. Dingle, and W.J. Knottenbelt

Table 1. Structured grammar for Performance Trees

Performance Natural Language Arguments Output
Tree Node Representation

RESULT “is it true that” InInterval | Subset | ¬ | N/A
∧ / ∨ | ≥, >, ==, <, ≤

“what is the” PTD | Dist | N/A
Conv | Moment |
SS:P | SS:S | FR |
ProbInInterval | ProbInStates |
StatesAtTime | ⊕

PTD “the passage time density defined by states, states PTD
start states” states “and target states” states

Dist “the cumulative distribution function calculated PTD Dist
from” PTD

Conv “the convolution of” PTD “and” PTD PTD, PTD PTD
SS:P “the steady-state probability distribution of” statefunc, states num

statefunc “applied over” states
Perctl “the” num “percentile of” PTD | Dist num, PTD | num, Dist num

StatesAtTime “the set of states that the system can be in num, Range states
at the time instant” num “within
probability bound” Range

ProbInStates “the transient probability of the system states, states, num num
having started in” states “and being in”
states “at the time instant given by” num

Moment “the” num “ raw moment of” PTD | Dist num, PTD | num, Dist num
FR “the frequency of” action action num

ProbInInterval “the probability with which a value sampled from” PTD, Range num
PTD “lies within” Range

InInterval num “lies within” Range num, Range bool
Subset states “is a subset of” states states, states bool
∧ / ∨ bool “and/or” bool “holds” bool, bool bool

¬ “the negation of” bool “holds” bool bool
≥, >, ==, <, ≤ num “greater than or equal to/greater than/equal num, num bool

to/less than/less than or equal to” num
⊕ num “plus/minus/raised to the power of/ num, num num

multiplied by/divided by” num
Range “the range” num “to” num num, num num

Table 2. Description of user-specified value nodes

Node Description

action The name of an action (transition in GSPN context)
bool True or False
num A real number
states A specification of a subset of reachable states
statefunc A function applied to a state that returns a real number

building a Performance Tree query can be quite time-consuming. We have there-
fore developed an alternative approach based on structured natural language and
implemented this in the Natural Language Query Builder (NLQB). The NLQB
enables users to build performance queries in an iterative manner by selecting nat-
ural language fragments from a constantly-updated pull-down menu.

As shown in Table 1, the foundation of the NLQB is a structured natural
language grammar derived from the syntax of Performance Trees. Following

Natural Language Specification of Performance Trees 145

Fig. 1. Screenshot of the Natural Language Query Builder, showing a natural language
query specification and the corresponding Performance Tree

the convention introduced in [9], non-terminals (operation nodes) are shown
in italics, literal terminals (the natural language representation) are given in
quotation marks (“ ”) and non-literal terminals are given in bold. These non-
literal terminals are user-supplied value nodes and can only be of type num,
bool, states, statefunc and action. A description of the permitted values for
these nodes is given in Table 2.

3.1 Using the Natural Language Query Builder

Fig. 1 shows the NLQB in use. The user selects the appropriate phrases from
the drop-down menu underneath the main graphical display and at the same
time the corresponding Performance Tree is automatically constructed. When a
selection has been made, the selected phrase is inserted in the natural language
query in the text area and, at the same time, a corresponding Performance Tree
node is plotted in an appropriate position. An automatic positioning mechanism
calculates the coordinates of the recently created node and its outgoing arcs
according to the position of its parent node and its level in the tree. The position

146 L. Wang, N.J. Dingle, and W.J. Knottenbelt

of nodes and arcs can be adjusted manually if the user is not satisfied with the
automatic positioning.

Each option in the drop-down menu consist of two elements – the natural
language representation and the expected arguments. The natural language rep-
resentation explains the operation that the node carries out, and the expected
arguments (displayed in square brackets) indicate the type of its child nodes. The
first expected argument is coloured in red, and all other expected arguments are
coloured in blue. The user then specifies arguments in turn via the drop-down
menu. As an argument is specified, its natural language representation is added
to the query. When a value node is required, a dialog is presented to allow the
user to make the required assignment.

For example, the InInterval node is expressed as “num lies within Range”.
When it is selected by the user, the first expected argument, num, indicates that
a numerical value is required as input, so the NLQB uses the structured natural
language grammar (given in Table 1) to find all nodes that produce numerical
output and inserts their natural language representation into the drop-down
menu. The other expected argument is a Range node; the NLQB only displays
the corresponding phrase “the range num to num” in the menu after the first
argument to the InInterval node has been supplied.

Each natural language phrase is presented in a different colour according to
the output type of the node it represents. For example, phrases representing
nodes with Boolean output are coloured black but phrases representing a set
of states are in cyan. This aids readability by helping users to easily categorise
each part of the natural language representation of their query. The NLQB also
provides an undo mechanism to allow users to correct their query.

4 Case Study

We demonstrate how to design queries and calculate the relevant results using
the NLQB for two examples based on the Accident and Emergency (A&E) de-
partment GSPN model of [6] shown in Fig. 2. There is an initial group of healthy
people who fall ill and go to a hospital – arriving either by walking in or by am-
bulance. Walk-in patients wait in the waiting room for assessment until a nurse
becomes available, while ambulance patients wait on a trolley to be assessed by
a nurse. Patients are subsequently either seen by a doctor for treatment, sent for
lab tests or sent for surgery. The model is parameterised by P , N and D, which
denote the number of tokens on the places healthy (people), nurses and doctors,
respectively. In the following examples, we set P = 10, N = 4 and D = 4,
yielding an underlying Markov chain with 313 986 states.

Example 1. We wish to answer the performance query:

What is the cumulative distribution function of the time taken for all
patients in the system to fall ill, complete treatment and be discharged
from the hospital?

Natural Language Specification of Performance Trees 147

Fig. 2. GSPN model of a Hospital A&E Department [6]

The first thing the NLQB needs to know is whether this query expects a truth
value or a quantitative measure as its result. Therefore, the only two available
options in the drop-down menu are “Is it true that [bool]?” and “What is the
[quantitative measure]?” In this case, we select the second option.

As we have selected the quantitative measure option, the NLQB interrogates
the structured grammar table, extracts all operations that produce quantita-
tive values and places their natural language representations into the drop-down
menu. We are interested in computing a passage time distribution and so we
choose the “cumulative distribution function calculated from [PTD]” as our next
input. This is incorporated into the natural language representation of the query
and at the same time a Dist node is created in the Performance Tree and con-
nected to the RESULT node.

The next argument to be specified is “[PTD]”, which is displayed in red.
This requires two sets of states as arguments which are assigned manually when
“Assign States” is selected from the menu (using PIPE’s state assignment tool).
The specification of the start states in this query (in this case a single start
state) is given as:

all patients healthy := (#(healthy) = 10) ∧ (#(nurses) = 4) ∧ (#(doctors) = 4)

Similarly, the specification of the target states is:

all patients treated := (#(finished) = 10)

where #(p) returns the number of tokens on place p in the model.
The completed query is shown in Fig. 3. The resulting natural language spec-

ification is:

What is the cumulative distribution function calculated from the passage
time density defined by the set of start states ‘all patients healthy’ and
the set of target states ‘all patients treated’?

148 L. Wang, N.J. Dingle, and W.J. Knottenbelt

Fig. 3. The expression of Example 1 in the NLQB

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 1 2 3 4 5 6 7

P
ro

ba
bi

lit
y

D
en

si
ty

Time

Passage time density: Hospital Model

Fig. 4. Probability density function of the time taken to process all patients in the
hospital model

Fig. 4 shows the result of evaluating the PTD (passage time density) node sub-
query, while Fig. 5 shows the cumulative distribution function resulting from the
evaluation of the overall query.

Natural Language Specification of Performance Trees 149

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7

P
ro

ba
bi

lit
y

Time

Passage time distribution: Hospital Model

Fig. 5. Cumulative distribution function of the time taken to process all patients in
the hospital model. The probability at time t = 4 is also marked.

Fig. 6. The expression of Example 2 in the NLQB

150 L. Wang, N.J. Dingle, and W.J. Knottenbelt

Example 2. We wish to answer the performance query:

What is the probability that all patients complete treatment and are
discharged from the hospital within 4 time units?

This is constructed in a similar way as Example 1 and, as shown in Fig. 6, the
NLQB produces the following natural language specification:

What is the probability with which a value sampled from the passage
time density defined by the set of start states ‘all patients healthy’ and
the set of target states ‘all patients treated’ lies within the range 0 to 4?

From the cumulative distribution function in Fig. 5, we can see that the prob-
ability that all patients complete their treatment within 4 time units is 0.933
(rounded to 3 decimal places).

5 Conclusion

In this paper, we have presented a structured natural language query specifica-
tion mechanism for Performance Trees. We have implemented this in PIPE as
the Natural Language Query Builder which can be used with existing analysis
tools to specify and calculate performance measures of interest.

There are a number of avenues for future work. Firstly, we are working to pro-
vide support for queries tailored to specific user models, i.e. support for model-
specific terminology that takes into account the semantic meaning of model
components. For example, in the context of the A&E model, we would like to be
able to input queries such as “Is the time from the first patient to fall ill to the
time of discharge from the hospital less than 4 hours at least 98% of the time?”
We intend to accomplish this by requiring the user to augment the system model
with information relating abstract model components to real world entities (e.g.
in the context of a Petri model, what do the tokens on particular places repre-
sent?) Secondly, we would like to augment the Performance Tree formalism with
an experimental framework so that we can pose questions such as “How many
doctors should be employed to ensure the 98th percentile of patient treatment
time is below 4 hours?” Finally, we would like to apply natural language tech-
niques for Performance Trees in the context of important domains outside of
modelling such as the specification of Service Level Agreements.

References

1. PIPE: Platform-Independent Petri net Editor, http://pipe2.sourceforge.net
2. Ajmone-Marsan, M., Conte, G., Balbo, G.: A class of Generalised Stochastic Petri

Nets for the performance evaluation of multiprocessor systems. ACM Transactions
on Computer Systems 2, 93–122 (1984)

3. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Verifying continuous-time Markov
chains. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 269–
276. Springer, Heidelberg (1996)

http://pipe2.sourceforge.net

Natural Language Specification of Performance Trees 151

4. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model checking continuous-time
Markov chains. ACM Transactions on Computational Logic 1(1), 162–170 (2000)

5. Bonet, P., Llado, C.M., Puijaner, R., Knottenbelt, W.J.: PIPE v2.5: A Petri net
tool for performance modelling. In: Proceedings of the 23rd Latin American Con-
ference on Informatics (CLEI 2007), San Jose, Costa Rica (October 2007)

6. Brien, D.K., Dingle, N.J., Knottenbelt, W.J., Kulatunga, H., Suto, T.: Performance
Trees: Implementation And Distributed Evaluation. In: Proc. 7th Intl. Workshop
on Parallel and Distributed Methods in Verification (PDMC 2008), Budapest, Hun-
gary, March 2008. Elsevier, Amsterdam (2008)

7. Dingle, N.J.: Parallel Computation of Response Time Densities and Quantiles in
Large Markov and Semi-Markov Models. PhD thesis, Imperial College, London,
United Kingdom (2004)

8. Flake, S., Müller, W., Ruf, J.: Structured English for model checking specification.
In: Methoden und Beschreibungssprachen zur Modellierung und Verifikation von
Schaltungen und Systemen, Frankfurt, February 2000, pp. 99–108 (2000)

9. Grunske, L.: Specification patterns for probabilistic quality properties. In: Proc.
30th International Conference on Software Engineering (ICSE 2008), Leipzig, Ger-
many, pp. 31–40 (2008)

10. Holt, A., Klein, E.: A semantically-derived subset of English for hardware ver-
ification. In: Proc. 37th Annual Meeting of the Association for Computational
Linguistics, Maryland VA, USA, pp. 451–456 (1999)

11. Knottenbelt, W.J.: Generalised Markovian analysis of timed transition systems.
Master’s thesis, University of Cape Town, Cape Town, South Africa (July 1996)

12. Konrad, S., Cheng, B.H.C.: Real-time specification patterns. In: Inverardi, P., Jaza-
yeri, M. (eds.) ICSE 2005. LNCS, vol. 4309, pp. 372–381. Springer, Heidelberg
(2006)

13. Smith, R.L., Avrunin, G.S., Clarke, L.A., Osterweil, L.J.: PROPEL: An approach
supporting property elucidation. In: Proc. 24th International Conference on Soft-
ware Engineering (ICSE 2002), Orlando FL, USA, pp. 11–21 (2002)

14. Suto, T., Bradley, J.T., Knottenbelt, W.J.: Performance Trees: A New Approach to
Quantitative Performance Specification. In: Proc. 14th IEEE/ACM Intl. Sympo-
sium on Modeling, Analysis and Simulation of Computer and Telecommunications
Systems (MASCOTS 2006), Monterey, CA, USA, September 2006, pp. 303–313
(2006)

15. Suto, T., Bradley, J.T., Knottenbelt, W.J.: Performance trees: Expressiveness and
quantitative semantics. In: Proceedings of the 4th International Conference on the
Quantitave Evaluation of Systems (QEST 2007), September 2007, pp. 41–50. IEEE
Computer Society Press, Los Alamitos (2007)

Recurrent Method
for Blocking Probability Calculation
in Multi-service Switching Networks

with BPP Traffic

Mariusz Głąbowski

Chair of Communication and Computer Networks, Poznan University of Technology
ul. Polanka 3, 60-965 Poznan, Poland
mariusz.glabowski@et.put.poznan.pl

Abstract. This paper presents a new approximate analytical recur-
rent calculation method of the occupancy distribution and the blocking
probability in switching networks which are offered multi-service traffic
streams generated by Binomial (Engset) & Poisson (Erlang) & Pascal
traffic sources (BPP traffic). The method is based on the concept of ef-
fective availability. The proposed calculation algorithm is based on the
recurrent calculation of blocking probability in subsequent subsystems
of the switching network. These calculations involve determination of
occupancy distributions in interstage links as well as in the outgoing
links. These distributions are calculated by means of the full-availability
group model and the limited-availability group model. The results of an-
alytical calculations of the blocking probabilities are compared with the
simulation results of 3-stage and 5-stage switching networks.

Keywords: BPP traffic, switching networks, blocking probability.

1 Introduction

Determining traffic characteristics of multi-service multi-stage switching net-
works is a complex problem, both in optical and electronic networks [1]. Basic
problems associated with the description of such systems arise from a necessity of
servicing various types of traffic sources by the network [2]. In principle, the clas-
sification of traffic sources is reduced to distinguishing the CBR (Constant Bit
Rate) and the VBR (Variable Bit Rate) sources. To define loads introduced into
networks by the VBR sources, it is proposed to determine the so-called equivalent
bandwidth for particular classes of traffic streams generated by the sources [2].
The assignment of several constant bit rates to the VBR sources enables the
evaluation of traffic characteristics of switching systems in the virtual-circuit
switching networks by means of multi-rate models worked out for the multi-rate
circuit switching [2,3,4]. In multi-rate models resources required for the connec-
tions of particular classes are the multiplicity of a certain value of bandwidth, the
so-called BBU (Basic Bandwidth Unit). While constructing multi-rate models

N. Thomas and C. Juiz (Eds.): EPEW 2008, LNCS 5261, pp. 152–167, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Recurrent Method for Blocking Probability Calculation 153

for broadband systems, it is assumed that BBU is the greatest common divisor
of the equivalent bandwidths of all call streams offered to the system [2].

Multi-service switching networks were the subject of many analyses [5,6,7,8].
The analytical methods of determination of traffic characteristics of such sys-
tems can be classified into two groups. In the first one time-effective algorithms
of solving statistical equilibrium equations in a multi-dimensional Markov pro-
cess are searched for. However, in spite of its great accuracy, this method cannot
be used for calculations of larger systems which have practical meaning. The
reason for this is an excessive number of states1 in which a multi-dimensional
Markov process occurring within the system can take place [5]. Methods of the
other group consist in approximating a multi-dimensional service process by the
appropriately constructed one-dimensional Markov chain, which is characterised
by a product form solution [9,10,11,12]. Within the latter group, the most effec-
tive methods of switching networks calculations are the well-proven methods of
the so-called effective availability [7,13,14]. The effective availability is defined as
the availability in a multi-stage switching network in which the blocking prob-
ability is equal to the blocking probability of a single-stage network (grading)
with the same capacity of the outgoing group and with analogous parameters
of the traffic stream offered. The modern methods of calculating the effective
availability are based on works [13,14] and [15], where all the components of
this parameter have been defined. In [7], the practical and universal formulae for
calculating the effective availability have been derived for arbitrary multi-stage
switching networks carrying a mixture of different multi-rate traffic streams. On
the basis of such formulae, the methods for multi-service switching networks
with point-to-point, point-to-group and point-to-group with several attempts of
setting up a connection have been proposed, firstly for the systems with Poisson
traffic streams [7,8], and then with Engset and Pascal traffic streams [16,17,18].

This group of methods, based on the work [7], requires a quite complex pro-
cess of determination of the effective availability parameter. For each switching
network it is necessary to calculate its channel graph and then the so-called prob-
ability of non-availability of last-stage switch for particular traffic classes. The
process of determination of channel graphs is particularly complex in multi-stage
networks. Consequently, in [19], a method of determination of the effective avail-
ability in multi-rate switching networks in subsequent subsystems (stages) of the
switching network was proposed, what reduced significantly the complexity of
the method of blocking probability calculation in multi-service switching net-
works. This method is limited for switching networks with Poisson call streams.
However, recently we can notice increasing interest in elaborating effective meth-
ods of analysis of multi-service systems in which traffic streams of each class are
generated by a finite number of sources. This is due to the fact that in modern
networks (e.g. Universal Mobile Telecommunications System) the ratio of source
population and capacity of a system is often limited and the value of traffic load
offered by calls of particular classes is dependent on the number of occupied

1 A state of a system in the multi-dimensional state space is explicitly described by
the number of calls of particular classes carried by the system.

154 M. Głąbowski

bandwidth units in the group, i.e. on the number of in-service/idle traffic sources.
In such systems the arrival process is modeled by Binomial process [20]. On the
other hand, the Pascal arrival process is used to model overflow traffic with a
given variance and a mean traffic [21]. Consequently, on the basis [22,23,24], in
this paper the new recurrent method of blocking probability calculation in the
switching networks which are offered multi-service traffic streams generated by
Binomial (Engset)–Poisson (Erlang)–Pascal traffic sources has been proposed.

The remaining part of this paper is organised as follows. Section 2 is devoted to
the elaboration of the method for blocking probability calculation in multi-stage
multi-service switching networks with BPP traffic. In Section 3, the calculation
and simulation results for selected switching networks have been compared. Sec-
tion 4 concludes the paper.

2 Switching Networks Calculations

2.1 Basic Assumptions

Let us consider a switching network with multi-rate BPP (Binomial-Poisson-
Pascal) traffic (Fig. 1). Let us assume that each of inter-stage links has the
capacity equal to f BBUs and that outgoing transmission links create link groups
called directions. The outgoing links can be wired to the directions in different
ways. In Figure 1, the outgoing directions in the switching network have been
created as follows: each first link of each last-stage switch belongs to the first
direction and, analogously, each link n of each last-stage switch belongs to the
same direction with a serial number equal to n.

stage 1

direction

1

2

1

2

3

1

2

3

stage 2 stage 3

direction

2

direction

3

1-stage subsystem

2-stage subsystem

3-stage subsystem

Fig. 1. 3-stage switching network

In general, switching networks can operate with a point-to-group or point-
to-point selection. Let us consider first the switching network with a point-to-
group selection. Following the control algorithm of this kind of selection [7],

Recurrent Method for Blocking Probability Calculation 155

the control device of the switching network determines the first-stage switch, on
the incoming link of which a class-c call appears (switch α). Then, the control
system finds the last-stage switch (switch β) having a free outgoing link (i.e.
the link comprising of at least tc free BBUs) in a required direction. Next, the
control device tries to find a connection path between switches α and β. If such
a path does not exist, the control system begins the second attempt to set up
a connection, i.e. the control system determines another switch β and tries to
find a new connection path between switches α and β. The number of attempts
is limited to the number of the last-stage switches having at least tc idle BBUs
in the considered direction. If the connection cannot be set up during the last
possible attempt, a class-c call is lost as a result of internal blocking. When none
of the outgoing links of the demanded direction of the switching network can
service the class-c call (i.e. does not have tc free BBUs) a call is lost due to
the phenomenon of external blocking. In the case of a switching network with
point-to-point selection, the number of attempts of setting up a new connection
is limited to one.

In the paper we have assumed that an interstage link can be modelled by the
full-availability group model and a direction can be modelled by the limited-
availability group model, described in Sect. 2.2.

2.2 Link Models in Switching Networks

Limited-Availability Group Model. Let us consider the limited-availability
group (LAG) model, i.e. the system composed of ν separate transmission links,
presented in Fig. 2. Additionally, each of the links of the group has the capacity
equal to f BBUs. Thus, the total capacity of the system is equal to V = νf .
The system services a call – only when this call can be entirely carried by the
resources of an arbitrary single link. It is therefore an example of a system with
a state-dependent service process, in which the "state-dependence" results from
the structure of the group.

The group is offered three types of traffic streams: MI Erlang (Poisson) traffic
streams, MJ Engset (Binomial) traffic streams and MQ Pascal traffic streams.
The mean arrival rate of a class-i Erlang traffic stream does not depend on
the state of the system and is equal to λi, while the mean arrival rate λj(n)
of a class-j Engset traffic stream and the mean arrival rate λq(n) of a class-q
Pascal traffic stream depend on the number of calls being serviced (the system
with state-dependent arrival process) in the following way:

λj(n) = (Nj − nj(n))γj , (1)

λq(n) = (Sq + nq(n))γq , (2)

where:

– Nj – the number of sources of Engset class j requiring tj BBUs,
– nj(n) – the number of in-service sources of Engset class j in state n,
– γj – the mean arrival rate generated by an idle source of Engset class j,

156 M. Głąbowski

�����

1

1

2

3

4

5

6

7

8

. . .

f

2

1

2

3

4

5

6

7

8

. . .

f

. . .

ν

1

2

3

4

5

6

7

8

. . .

f

. . .

������ i	 λi
 µi
 ti

. . .

�����

�����

�������

. . .

������ j	 γj
 Nj
 µj
 tj

. . .

�����

�����

�������

. . .

������ q	 γq
 Sq
 µq
 tq

. . .

������

�����

�������

Fig. 2. Exemplary limited-availability group

– Sq – the number of sources of Pascal class q requiring tq BBUs,
– γq – the mean arrival rate generated by an idle source of Pascal class q,
– nq(n) is the number of in-service sources of Pascal class q in state n.

The mean traffic offered to the system in the state of n BBUs being busy by
class-j and -q traffic sources is equal to:

Ai(n) = Ai = λi/µi , (3)

Aj(n) = (Nj − nj(n))αj , (4)

Aq(n) = (Sq + nq(n))βq , (5)

where αj = γj/µj and βq = γq/µq are the mean traffic offered by an idle source
of class j and q, respectively. In the model considered we assume that the holding
time for calls of particular BPP traffic classes have an exponential distribution
with intensity µi, µj and µq, respectively.

As we can notice in (4) and (5), interrelation between the offered traffic and
the number of in-service sources in Engset and Pascal streams makes the direct
application of the Kaufman-Roberts recursion (KRR) [11,12] (elaborated for sys-
tems with Poisson traffic streams) for determining the occupancy distribution in
the considered system impossible. Consequently, in [24] an approximate method
has been proposed, which enables us to make the mean value of traffic offered by
class j and q dependent on the occupancy state (the number of occupied BBUs)
of the group, and thereby to determine the system with a finite population of

Recurrent Method for Blocking Probability Calculation 157

sources by the KRR. Assuming that the average number nj(n) of calls currently
in service of class j and the average number nq(n) of calls currently in service
of class q in state n is known, KRR can be rewritten in the form that includes
characteristics of BPP traffic streams, namely:

n [Qn]V =
∑MI

i=1
Aitiσi(n − ti) [Qn−ti]V +

+
∑MJ

j=1
(Nj − nj(n − tj))αjσj(n − tj)tj

[
Qn−tj

]
V

+

+
∑MQ

q=1
(Sq + nq(n − tq))βqσq(n − tq)tq

[
Qn−tq

]
V

, (6)

where [Qn]V is the probability of an event in which there are n busy BBUs in
the system and σi(n), σj(n), σq(n) are the so-called conditional state-passage
probabilities, i.e. the probability of admission of a class-i, -j and -q call to the
service when the system is found in the state n.

According to the considerations presented in [11,22,23], the parameter nc(n)2

is equal to the reverse transition rate and can be calculated on the basis of the
local equations of equilibrium [22,11]:

nc (n) =

{
Ac(n−tc)σc(n−tc)[Qn−tc]V

[Qn]V
for 0 ≤ n ≤ V ,

0 otherwise .
(7)

Let us notice that in order to determine the parameter nc(n) the knowledge of
the occupancy distribution [Q]V is necessary. In order to determine the distribu-
tion [Q]V in turn, it is necessary to know the value nc(n). Equations (7) and (6)
form then a set of confounding equations that can be solved with the application
of iterative methods.

Let us assume that the distribution [Q](l)V is the occupancy distribution for
a system with a state-dependent service process and a state-dependent arrival
process determined in the l-th iteration, while n

(l)
c (n) determines the mean num-

ber of calls currently in service of class c determined in the l-th iteration. Thus:

n(l+1)
c (n) =

⎧⎪⎨⎪⎩
A(l+1)

c (n−tc)σc(n−tc)
[
Q

(l)
n−tc

]
V[

Q
(l)
n

]
V

for 0 ≤ n ≤ V ,

0 otherwise .

(8)

In line with [24], in the first iteration the parameters ∀j∈MJ ∀0≤n≤V n
(0)
j (n) = 0

and ∀q∈MQ∀0≤n≤V n
(0)
q (n) = 0. The adopted assumption means that the Engset

and Pascal streams – in the first iteration – can be treated as an equivalent
Erlang stream generating the offered traffic with the intensity:

A
(0)
j (n) = Aj = Njαj , A(0)

q (n) = Aq = Skβq , (9)

2 In the present paper, the letter "i" denotes an Erlang traffic class, the letter "j" -
an Engset traffic class, the letter "q" - a Pascal traffic class, and the letter "c" - an
arbitrary traffic class.

158 M. Głąbowski

which is equal in value to the traffic offered by all free sources of class-j En-
gset stream and class-q Pascal stream. The state probabilities, obtained on the
basis of (6), constitute the input data for the next iteration, where the param-
eters nj(n), nq(n) are designated. The iterative process ends when the assumed
accuracy of the iterative process is obtained.

In order to determine the occupancy distribution in the considered system on
the basis of (6), it is first necessary to define the state transition coefficients σc.
These coefficients take into account the dependence between call streams and
the state of the system and allow us to determine the part of the incoming call
stream λc to be transferred between the states {n} and {n + tc} due to the
specific structure of the limited-availability group. The parameter σc(n) does
not depend on the arrival process and can be calculated as follows [7]:

σc(n) = 1 − (F (V − n, ν, tc − 1)/F (V − n, ν, f)) , (10)

where F (x, ν, f) is the number of arrangements of x free BBUs in ν links, the
capacity of each link is equal to f BBUs:

F (x, ν, f) =
� x

f+1�∑
i=0

(−1)i

(
ν

i

)(
x + ν − 1 − i (f + 1)

ν − 1

)
. (11)

To sum up, the algorithm of determination of the occupancy distribution
and blocking probability (time congestion) in systems with multi-service Erlang,
Engset and Pascal streams may be written as follows:

Algorithm 1. Blocking probability calculation in link groups with BPP Traffic
1. Determination of state-passage coefficients σc(n), determining the dependency be-

tween the service process and the state of the system (Equation (10)).
2. Setting of the iteration number l = 0.
3. Determination of initial values of n

(l)
j (n), n

(l)
q (n):

∀1≤j≤MJ ∀0≤n≤V n
(l)
j (n) = 0, ∀1≤q≤MQ∀0≤n≤V n

(l)
q (n) = 0.

4. Increase of the iteration number: l = l + 1.
5. Determination of state probabilities [Q

(l)
n]V (Equation (6)).

6. Calculation of reverse transition rates n
(l)
j (n) and n

(l)
q (n) (Equation (8)).

7. Repetition of Steps No. 4–6 until the assumed accuracy of the iterative process is
obtained:

∀n∈〈0,V 〉

(∣∣∣∣∣ (n
(l−1)
j (n) − n

(l)
j (n))

n
(l)
j (n)

∣∣∣∣∣ ≤ ξ ,

∣∣∣∣∣n(l−1)
q (n) − n

(l)
q (n)

n
(l)
q (n)

∣∣∣∣∣ ≤ ξ

)
. (12)

8. Determination of blocking probabilities e(c) for calls of particular traffic classes:

e(c) =
∑V −tc

n=0
[Qn]V [1 − σc(n)] +

∑V

n=V −tc+1
[Qn]V . (13)

Recurrent Method for Blocking Probability Calculation 159

Observe that the conditional transition coefficients σc that determine the de-
pendency between the service process and the state of the system are determined
once and do not change during successive iterations.

Full-Availability Group Model. The full-availability group (FAG) is a dis-
crete model of a single link that uses complete sharing policy [2]. This system is
an example of a state-independent system in which the passage between two ad-
jacent states of the process associated with a given class stream does not depend
on the number of busy BBUs in the system. Therefore, the conditional state-
passage probability σc(n) in FAG is equal to 1 for all states and for each traffic
class. Consequently, the occupancy distribution and blocking probabilities in the
groups with an infinite and a finite source population can be calculated by the
equations (6) and (13), taking into consideration the fact that: ∀c∀nσc(n) = 1.

2.3 Effective Availability Parameter

The basis of the proposed recurrent method of blocking probability calculation
in multi-stage switching networks is the method proposed by Ershov in [14] and,
subsequently, modified in [15]. These methods exploit the parameter of effective
availability, the calculation of which is based on the parameter π determining
the probability of non-availability of a last-stage outgoing link in the required
direction for the selected first-stage switch. The proposed original approach [14]
of calculating the parameter π by the channel graph method can lead to increase
in complexity of the process of blocking probability calculation in multi-stage
switching networks. Consequently, in this section the recurrent method is ap-
plied for switching networks with BPP traffic, in which the parameter π in
l-stage subsystem of the switching network is determined on the basis of block-
ing probability in the (l − 1)-stage subsystem of the switching network. Such an
approach allows us to omit the process of channel graph determination and start
the calculation process from one-stage subsystem of the switching network.

In order to determine the blocking probability in multi-stage switching net-
works let us consider a z-stage multi-service switching network with point-to-
group selection. Now, for class-c calls we can determine the so-called equivalent
switching network. The concept of the equivalent switching network [7] is the
base for effective availability calculation for a class-c traffic stream. Following
this concept, the network with multi-rate traffic is reduced to an equivalent net-
work carrying a single-rate traffic. Each link of the equivalent network is treated
as a single-channel link with a fictitious load el(c) equal to the blocking proba-
bility for the class-c stream in a link of a real switching network between section
l and l + 1. This probability can be calculated on the basis of the occupancy
distribution in the full-availability group with BPP traffic streams (Sect. 2.2).

The effective availability in a real z-stage switching network is equal to the
effective availability in an equivalent switching network. According to recent
work [7], it can be determined by the following formula:

de,c,z = [1 − πz(c)]Vr + πz(c)ηrY1(c) + πz(c)[Vr − ηrY1(c)]yz,r(c)θz(c) , (14)

160 M. Głąbowski

where:

– de,c,z – the effective availability for the class-c stream in an equivalent z-stage
switching network;

– πl(c) – the probability of non-availability of a stage l switch for the class-
c call; πl(c) is the probability of an event where a class-c connection path
cannot be set up between a given first-stage switch and a given stage l switch.
Evaluation of this parameter is traditionally based on the channel graph of
the equivalent switching network. For example, on the basis of channel graph
of 3-stage network presented in Fig. 1, we obtain:

π3(i) = {1 − [1 − e1(i)][1 − e2(i)]}ν ; (15)

– Vr – the number of links in direction r of the considered switching network;
– Yl(c) – the average value of the fictitious traffic served by the switch of the

stage l, Yl(c) = mlel(c), where ml is the number of the outgoing links of the
stage l switch;

– ηr – a portion of the average fictitious traffic from the switch of the first
stage which is carried by the direction r. If the traffic is uniformly distributed
between all h directions, we obtain: ηr = 1/h;

– θz(c) – the so-called secondary availability coefficient [7] which is the prob-
ability of an event in which the connection path of the class-c connection
passes through directly available switches of intermediate stages.

– yz,r(c) – the fictitious load carried by one outgoing link in the direction r of
the equivalent switching network, in most switching networks yz,r(c) = e(c).

In Equation (14), the first element ([1−πz(c)]Vr) determines the average num-
ber of last-stage switches directly available for a first-stage switch, the second el-
ement (πz(c)ηrY1(c)) determines the average number of last-stage switches avail-
able by direct occupancy, and the last element (πz(c)[Vr − ηrY1(c)]yz,r(c)θz(c))
determines the average number of last-stage switches available by the secondary
availability [7].

Analysing Equation (14) we can notice that the main problem is caused by the
determination of channel graphs for equivalent switching networks, and by calcu-
lation of secondary availability coefficient. Consequently, in this paper (Sect. 2.4)
the recurrent method of parameter π(c) calculation (the probability of direct
non-availability of the last-stage switch for the first-stage switch for a class-c
call) is applied. Additionally, it is proposed in the paper that the effective avail-
ability method, in conjunction with the recurrent method for switching networks
with BPP traffic, can be calculated by the following simplified formula:

de,c,z = [1 − πz(c)]Vr + πz(c)ηrY1(c) . (16)

Equation (16) allows us to eliminate the determination of the secondary avail-
ability in the process of the effective availability estimation.

Recurrent Method for Blocking Probability Calculation 161

2.4 Recurrent Method of Blocking Probability Calculation in
Switching Networks

Having determined the effective availability parameter in an equivalent switching
network we can explain the basic assumptions of the proposed recurrent method
of blocking probability calculation in multi-service switching networks.

n2

1

Kl-1 Kl

nl

Kz-1 Kz

nz

222222

1 1 1 1 1

Fig. 3. A diagram of multi-stage switching network

Let us consider a diagram of multi-stage switching network presented in Fig. 3.
We can notice that the probability πl(c) of non-availability of stage-l switch for
class-c calls is equal to the blocking probability in the group of nl links entering
this switch, i.e. is equal to the point-to-group blocking probability El−1 of the
switching network consisting of (l − 1) stages (Fig. 3):

πl(c) = El−1(c). (17)

Consequently, the effective availability parameter de,c,l for class-c calls in the
subsystem consisting of l stages of the z-stage switching network depends on the
point-to-group blocking probability in the subsystem consisting of (l−1) stages:

de,c,l = f(El−1(c)) = de,c,l(El−1(c)). (18)

In the paper, it is assumed that the internal point-to-group blocking probability
Ein in an equivalent switching network (calculated for a given class of multi-rate
traffic) can be approximated by the formula proposed by Ershova and Ershov
for switching networks with single-rate traffic [14]:

Ein = EIF(Ar, Vr, d), (19)

where Ar is the traffic offered in direction r of the equivalent switching network,
Vr is the number of links in direction r of the equivalent switching network and
EIF means Erlang’s Interconnection Formula:

EIF (A, V, d) =
V∑

l=d

(
l
d

)(
V
d

) Al

l!

l−1∏
k=d

[
1 −

(
k
d

)(
V
d

)]/
V∑

j=0

Aj

j!

j−1∏
k=d

[
1 −

(
k
d

)(
V
d

)]
. (20)

Taking the notation used in Fig. 3 into account we can rewrite (19) as follows:

Ein
l (c) = EIF (Al+1(c), nl+1, de,c,l(El−1(c)) , (21)

162 M. Głąbowski

where Al+1 is the traffic offered to a single switch of stage l + 1 and nl+1 is the
number of links between stage l switches and a single switch of stage l + 1. The
values of the parameters V and d, inserted into binomial coefficients in (20), for
real switching networks are usually not greater than twenty.

On the basis of (17), (18) and (21) we can perceive that the internal blocking
probability in multi-stage switching networks can be calculated recurrently. The
calculation process can begin from determining the blocking probability E1(c).
Assuming that the single first-stage switch is non blocking we obtain that de(c) =
1, and, consequently:

E1(c) = EIF(A2, 1, 1), (22)

where A2 is the traffic offered to a single switch of the second stage and is equal
to the value of fictitious load of the link between stages 1 and 2. The calculation
process can also start from a such subsystem of the switching network for which
the calculation of the parameter π(c) is not complicated.

The final internal blocking probability Ein(c), according to the proposed cal-
culation method, is equal to the blocking probability Ein

z (c), i.e.:

Ein(c) = Ein
z (c) = EIF(Ar(c), Vr, de,c,z(Ez−1(c)), (23)

where Ar(c) is the total traffic of the class-c stream offered to the outgoing
direction with the capacity equal to Vr links.

The phenomenon of the external blocking occurs when none of the outgoing
links of the demanded direction of the switching network can service the class-c
call (i.e. does not have tc free BBUs). The occupancy distribution of the outgoing
direction can be approximated by the distribution of available links in LAG
with BPP traffic. Thus, the external blocking probability can be calculated by
(13), i.e.:

Eex
c = e(c). (24)

The total blocking probability Ec for a class-c call is a sum of external and
internal blocking probabilities. Assuming the independence of internal and ex-
ternal blocking events, we obtain:

Ec = Eex
c + Ein

c [1 − Eex
c]. (25)

The proposed recurrent method allows us to determine the point-to-group
blocking probability. However, this method may be also directly used for point-
to-point blocking probability calculation in accordance with Lotze’s remark [25]
that point-to-point blocking in z-stage switching network is equal to point-to-
group blocking in a (z − 1)-stage switching network. In such a system the in-
coming links to the switch of the last z-stage are considered to be an outgoing
group (direction).

To sum up, the algorithm of determination of the occupancy distribution in
systems with multi-service BPP traffic streams is presented as Algorithm 2.

Recurrent Method for Blocking Probability Calculation 163

Algorithm 2. Blocking probability calculation in multi-service switching net-
works with BPP Traffic
1. Determination of fictitious load y(c) = e(c) for class-c calls in interstage links

(full-availability groups) between stage 1 and 2 on the basis of Algorithm 1.
2. Calculation of the offered traffic A(c) (the input parameter in EIF) on the basis

of fictitious load e(c) and Erlang-B formula:

A(c){1 − Ef [A(c)]} = e(c) , (26)

where A(c) is the traffic offered to a single input of the considered switching network
and Ef [A(c)] is the blocking probability in an interstage-link (between stages 1
and 2) with capacity equal to f BBUs, calculated according to Erlang-B formula.

3. Calculation of internal blocking probability in the switching network according
to (23).

4. Calculation of external blocking probability on the basis of the limited-availability
group modelling outgoing directions (Algorithm 1).

5. Calculation of total blocking probability on the basis of (25).

3 Calculation and Simulation Results

In order to confirm the adopted assumptions in the proposed method for switch-
ing networks with BPP traffic, the results of the analytical calculations were
compared with the simulation results of multi-stage switching networks. The
results presented in the paper were obtained for 3- and 5-stage switching net-
works consisting of the switches of ν×ν links. The results presented in the paper
(Figs. 4–5) were obtained for the switching network with the parameters: ν = 4,
f = 30 BBUs. The switching networks were offered three traffic classes in the
following proportions: A1t1 : N2α2t2 : S3β3t3 = 1 : 1 : 1, where t1 = 1 BBU
(Erlang traffic class), t2 = 2 BBUs (Engset traffic class), t3 = 6 BBUs (Pascal
traffic class). The research was carried out for N2 = S3 = 320 sources for Pascal
and Engset traffic streams. The results of the simulation (implemented in C++)
are shown in the charts in the form of marks with 95% confidence intervals that
have been calculated according to the Student-t distribution for the five series
with 100,000,000 calls of this traffic class that generates the lowest number of
calls. For each of the points of the simulation, the value of the confidence interval
is at least one order lower than the mean value of the results of the simulation.
In many a case, the value of the confidence interval is lower than the height
of the symbol used to indicate the value of the simulation experiment. All the
results are expressed in relation to the value of total traffic a offered to a single
BBU at the entry to the network:

a = (A1t1 + N2α2t2 + S3β3t3)/ V,

where V = ν × ν × f is the total capacity of the considered switching networks,
expressed in BBUs.

Figures 4 and 5 show the results of point-to-point and point-to-group blocking
probability in the 3-stage and 5-stage switching network with Erlang, Engset

164 M. Głąbowski

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

bl
oc

ki
ng

 p
ro

ba
bi

lit
y

traffic offered

Calculation class 1
Calculation class 2
Calculation class 3
Simulation class 1
Simulation class 2
Simulation class 3

Fig. 4. Point-to-point blocking probability in 3-stage switching network with BPP
traffic, ν = 4, f = 30, V = 120; Three traffic classes; Class 1: Erlang traffic stream,
t1 = 1 BBU, µ−1

1,0 = 1; Class 2: Engset traffic stream, t2 = 2 BBUs, µ−1
1,0 = 1, N2 = 320,

Class 3: Pascal traffic stream, t3 = 6 BBUs, µ−1
1,0 = 1, S3 = 320

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

bl
oc

ki
ng

 p
ro

ba
bi

lit
y

traffic offered

Calculation class 1
Calculation class 2
Calculation class 3
Simulation class 1
Simulation class 2
Simulation class 3

Fig. 5. Point-to-group blocking probability in 5-stage switching network with BPP
traffic, ν = 4, f = 30, V = 120; Three traffic classes; Class 1: Erlang traffic stream,
t1 = 1 BBU, µ−1

1,0 = 1; Class 2: Engset traffic stream, t2 = 2 BBUs, µ−1
1,0 = 1, N2 = 320,

Class 3: Pascal traffic stream, t3 = 6 BBUs, µ−1
1,0 = 1, S3 = 320

Recurrent Method for Blocking Probability Calculation 165

and Pascal sources, respectively. We can notice that the proposed methods of
blocking probability calculation in switching networks with BPP traffic ensures
high accuracy.

4 Conclusions

The paper presents the approximate recurrent method of point-to-group and
point-to-point blocking probability calculation in switching networks with multi-
rate traffic generated by a finite and an infinite source population (BPP traf-
fic). The method is based on the concept of effective availability. The proposed
method introduced two simplifications which can be applied for the effective
availability methods. The first simplification results from the calculation of the
probability of non-availability π(c) on the basis of blocking probability in sub-
sequent stages of the switching networks (without prior determination of a
channel graph) while the second simplification allows us to calculate the ef-
fective availability parameter without determination of the so-called secondary
availability.

The analytical results of blocking probability in multi-stage switching net-
works, obtained on the basis of the proposed methods, are compared with the
simulation results. It should be emphasized that this paper presents for the
first time the results obtained in the multi-service switching network servicing
a mixture of BPP streams. The simulation results confirm high accuracy of the
proposed analytical models. A lot of simulation experiments carried out by the
author so far indicate that similar accuracy can be obtained for greater capacity
of switching networks and greater number of offered traffic streams.

The method proposed in the paper can be applied for traffic engineering of
multi-rate networks as well as the networks with switched virtual circuits.

References

1. Zhou, Y., Poo, G.S.: Optical multicast over wavelength-routed WDM networks: A
survey. Optical Switching and Networking 2(3), 176–197 (2005)

2. Roberts, J., Mocci, V., Virtamo, I. (eds.): Broadband Network Teletraffic, Final
Report of Action COST 242. Commission of the European Communities. Springer,
Berlin (1996)

3. Roberts, J.: Teletraffic models for the Telcom 1 integrated services network. In:
Proceedings of 10th International Teletraffic Congress, Montreal, Canada (1983)
1.1.2

4. Sanso‘, B., Girard, A., Mobiot, F.: Integrating reliability and quality of service in
networks with switched virtual circuits. Computers and Operations Research 32(1),
35–58 (January 2005)

5. Conradt, J., Buchheister, A.: Considerations on loss probability of multi-slot con-
nections. In: Proceedings of 11th International Teletraffic Congress, Kyoto, Japan,
4.4B–2.1 (1985)

166 M. Głąbowski

6. Beshai, M., Manfield, D.: Multichannel services performance of switching networks.
In: Proceedings of 12th International Teletraffic Congress, Torino, Italy, pp. 857–
864. Elsevier, Amsterdam (1988)

7. Stasiak, M.: Combinatorial considerations for switching systems carrying multi-
channel traffic streams. Annales des Télécommunications 51(11–12), 611–625
(1996)

8. Głąbowski, M., Stasiak, M.: Point-to-point blocking probability in switching net-
works with reservation. Annales des Télécommunications 57(7–8), 798–831 (2002)

9. Fortet, R., Grandjean, C.: Congestion in a loss system when some calls want several
devices simultaneously. Electrical Communication 39(4), 513–526 (1964)

10. Iversen, V.: The exact evaluation of multi-service loss systems with access control.
In: Seventh Nordic Teletraffic Seminar (NTS-7), Lund, Sweden, August 1987, pp.
56–61 (1987)

11. Kaufman, J.: Blocking in a shared resource environment. IEEE Transactions on
Communications 29(10), 1474–1481 (1981)

12. Roberts, J.: A service system with heterogeneous user requirements—application
to multi-service telecommunications systems. In: Pujolle, G. (ed.) Proceedings of
Performance of Data Communications Systems and their Applications, pp. 423–
431. North Holland, Amsterdam (1981)

13. Lotze, A., Roder, A., Thierer, G.: PPL — a reliable method for the calculation of
point-to-point loss in link systems. In: Proceedings of 8th International Teletraffic
Congress, Melbourne, Australia, 547/1–44 (1976)

14. Ershov, V.A.: Some further studies on effective accessibility: Fundamentals of tele-
traffic theory. In: Proceedings of 3rd International Seminar on Teletraffic Theory,
Moscow, pp. 193–196 (1984)

15. Stasiak, M.: Blocage interne point a point dans les reseaux de connexion. Annales
des Télécommunications 43(9-10), 561–575 (1988)

16. Głąbowski, M.: Blocking probability in multi-service switching networks with finite
source population. In: Proceedings of The 14th IEEE International Conference On
Telecommunications, Penang, Malaysia (May 2007)

17. Głąbowski, M.: Point-to-point blocking probability calculation in multi-service
switching networks with BPP traffic. In: Czachórski, T. (ed.) Proceedings of The
14th Polish Teletraffic Symposium, Zakopane, September 2007, pp. 65–76 (2007)

18. Głąbowski, M.: Point-to-point and point-to-group blocking probability in multi-
service switching networks with BPP traffic. Electronics and Telecommunications
Quarterly 53(4), 339–360 (2007)

19. Głąbowski, M.: Recurrent calculation of blocking probability in multiservice
switching networks. In: Proceedings of the Asia-Pacific Conference on Commu-
nications (2006), doi:10.1109/APCC.2006.255964

20. Kogan, Y., Shenfild, M.: Asymptotic solution of generalized multiclass Engset
model. In: Labetoulle, J., Roberts, J. (eds.) Proceedings of 14th International Tele-
traffic Congress, Antibes Juan-les-Pins, France, vol. 1b, pp. 1239–1249. Elsevier,
Amsterdam (1994)

21. Delbrouck, L.: On the steady-state distribution in a service facility carrying mix-
tures of traffic with different peakedness factors and capacity requirements. IEEE
Transactions on Communications 31(11), 1209–1211 (1983)

22. Stasiak, M., Głąbowski, M.: A simple approximation of the link model with reserva-
tion by a one-dimensional Markov chain. Journal of Performance Evaluation 41(2-
3), 195–208 (2000)

Recurrent Method for Blocking Probability Calculation 167

23. Głąbowski, M., Stasiak, M.: An approximate model of the full-availability group
with multi-rate traffic and a finite source population. In: Buchholtz, P., Lehn-
ert, R., Pióro, M. (eds.) Proceedings of 3rd Polish-German Teletraffic Symposium,
Dresden, Germany, September 2004, pp. 195–204. VDE Verlag (2004)

24. Głąbowski, M.: Modelling of state-dependent multi-rate systems carrying BPP
traffic. Annals of Telecommunications (2007), doi:10.1007/s12243-008-0034-5

25. Lotze, A., Roder, A., Thierer, G.: Point-to-point selection versus point-to-group
selection in link systems. In: Proceedings of 8th International Teletraffic Congress,
Melbourne, Australia, 541/1–5 (1976)

An Approximate Model of the WCDMA Interface
Servicing a Mixture of Multi-rate Traffic

Streams with Priorities

Damian Parniewicz, Maciej Stasiak,
Janusz Wiewióra, and Piotr Zwierzykowski

Poznan University of Technology
Chair of Communications and Computer Networks

ul. Polanka 3, Poznań 60965, Poland
piotr.zwierzykowski@put.poznan.pl

Abstract. The paper presents an approximate method for blocking
probability determination in the WCDMA interface of the UMTS net-
work with priorities. In our considerations we use a new model of the
full-availability group servicing multi-rate traffic with priorities. In the
proposed model we assume that a new call with a higher priority can
terminate connections already in service if they are characterized by a
lower priority than a new call. The proposed scheme is applicable for cost-
effective WCDMA resource management in 3G mobile networks and can
be easily applied to network capacity calculations.

Keywords: WCDMA, full-availability group, priorities.

1 Introduction

Universal Mobile Telecommunication System (UMTS) using the Wideband Code
Division Multiple Access (WCDMA) radio interface is one of the standards pro-
posed for third generation cellular technologies (3G). According to the 3rd Gener-
ation Partnership Project (3GPP) recommendations, 3G systems should include
services with circuit switching and packet switching, transmit data at a speed of
up to 2 Mbit/s, and ensure access to multimedia services [1]. The dimensioning
process for the UMTS system should make it possible to determine such a ca-
pacity of individual elements of the system that will secure - with the assumed
load of the system - a pre-defined level of the Grade of Service (GoS). Due
to the possibility of resource allocation for different traffic classes, the capacity
determination of the WCDMA radio interface is much more complex than in
the case of Global Systems for Mobile Communications (GSM). The capacity of
the WCDMA interface is limited by the increase in interference caused by the
users serviced by other cells of the system who make use of the same frequency
channel as well as by the users making use of the adjacent radio channels and
by the multipath propagation occurring in the radio channel. To ensure an ap-
propriate level of service in UMTS it is thus necessary to limit the interference
by decreasing the number of active users or the allocated resources employed

N. Thomas and C. Juiz (Eds.): EPEW 2008, LNCS 5261, pp. 168–180, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

An Approximate Model of the WCDMA Interface 169

to service them. A number of papers have been devoted to traffic modelling in
cellular systems with the WCDMA radio interface, i.e. [2, 3, 4, 5, 6, 7, 8, 9, 10].
The works [2, 4, 5, 3, 6, 7, 10] proposed models of the WCDMA interface without
priorities. In [8, 9], the authors used the multi-rate Erlang-B loss formula for
evaluation of the blocking probabilities in a single cell servicing three multi-rate
traffic classes with priorities.

This paper presents a new effective blocking probability determination method
for a cellular system with the WCDMA interface with priorities. The proposed
method can be used for the uplink and downlink directions. The paper has
been divided into five sections. Section 2 discusses basic dependencies describing
the WCDMA interface in the UMTS network. Section 3 presents an analytical
model applied to blocking probability determination for different traffic classes
with priorities. The following section includes the results obtained in the study
of the system. The final section sums up the discussion.

2 WCDMA Interface in the UMTS Network

In a UMTS network it is possible to determine priorities for particular services.
The priorities define the sequence of resource allocations that can result in a
decrease in resources or the termination of a connection with a lower priority,
if the resources are insufficient. A decision on the priority of a given service is
made by the operator of the network, who defines its importance in the core
network (Fig. 1). UTRAN (UMTS Terrestrial Radio Access Network) identifies
the priority values of particular classes and, employing appropriate mechanisms
(admission/congestion control or scheduling [11]), manages traffic accordingly.
In general, this management is related to decreasing the flow capability or ter-
minating connections at the point when a new call with a higher priority arrives.

An important element of the UTRAN is the WCDMA radio interface (Fig. 1).
The capacity of the WCDMA radio interface in cellular systems is seriously lim-
ited due to the occurrence of some types of interference [1], namely: co-channel

Node B

RNC

Node B

UTRAN

core networkNode B

WCDMA

WCDMA

WCDMA

Fig. 1. Elements of the UMTS network structure

170 D. Parniewicz et al.

interference within a cell – from concurrent users of a frequency channel within
the area of a given cell; outer co-channel interference – from concurrent users of
the frequency channel working within the area of adjacent cells; adjacent chan-
nels interference – from the adjacent frequency channels of the same operator or
other cellular telecommunication carriers; and all possible noise and interference
coming from other systems and sources, both broadband and narrowband.

Before admitting a new connection in systems with the WCDMA radio inter-
face, admission control needs to check whether the admittance will not sacrifice
the quality of the existing connections. The admission control functionality is lo-
cated in RNC (Radio Network Controller), where the load information from the
surrounding cells can be obtained. The admission control algorithm estimates
the load increase that would be caused in the radio network by setting up a new
connection [1]. This is done not only in the access cell1 but also in the adjacent
cells, in order to take the inter-cell interference effect into account. A new call
is rejected if the predicted load exceeds particular thresholds set by the radio
network planning [12].

Summing up, in the WCDMA radio interface a growth in the load is accompa-
nied by a simultaneous growth in interference generated by other users serviced
by the same cell or other cells. Thus, to secure an appropriate level of service, it
is necessary to limit the number of allocated resources by active traffic sources.
It is estimated that the maximum usage of the resources of the radio interface
without lowering the quality of service will be equal to about 50-80% [1]. For
the same reason, one can talk about the so-called soft capacity of the WCDMA
radio interface, which is also described as the noise limited capacity.

Accurate signal reception is possible only when the relation of energy per bit
Eb to noise spectral density N0 is appropriate. A too low value of Eb/N0 will
cause the receiver to be unable to decode the received signal, while a too high
value of the energy per bit in relation to noise will be perceived as interference
for other users of the same radio channel. The relation Eb/N0 for a user of the
class i service can be calculated as follows [1]:(

Eb

N0

)
i

=
W

νiRi

Pi

Itotal − Pi
, (1)

where: Pi – signal power received from a user of the class i connection, W – chip
rate of spreading signal, vi – activity factor of a user of the class i service, Ri –
bit rate of a user of the class i service, Itotal – total received wideband power,
including thermal noise power.

The mean power of a user of the class i service can be expressed by the
following formula:

Pi = LiItotal, (2)
where Li is the so-called load factor for a user of the class i connection:

Li =

(
1 +

W

(Eb

N0
)iRiνi

)−1

. (3)

1 The access cell is the cell to which a new call is offered.

An Approximate Model of the WCDMA Interface 171

Table 1. Examples of Eb/N0, νi and Li for different service classes [4]

Class of service (i) Emergency call Voice Video call Data
W [Mchipps] 3.84

Ri [kbps] 12.2 12.2 64 144
νi 0.67 0.67 1 1

(Eb/N0)i [dB] 4 4 2 1.5
Li 0.0053 0.0053 0.0257 0.0503

Sample values Eb/N0 for different traffic classes and corresponding values of the
load factor Li, with the dependency (3) taken into account, are shown in Table 1.

In the case of perfect power control, the condition Eb/N0 is always fulfilled.
In real systems, Eb/N0 for a given service can sometimes differ from the target
value. However, the system will work properly only if the mean value oscillates
around the target value. We can use this requirement to determine the total load
for the uplink connection, which should be lower than the assumed capacity ηUL

of the radio interface in the uplink direction:

ηUL ≥
(
1 + δ̄

) M∑
i=1

Lini, (4)

where M is the number of services, ni is the number of users of i service, Li is
the load factor of a user of i service, parameter δ̄ is defined as the mean value of
other cell interference over proper cell interference and conventionally is between
0.2 and 0.8 [1].

The bigger the load of a radio link, the higher level of the noise generated.
When the load of the uplink direction approaches unity, the corresponding in-
crease in noise tends towards infinity. Therefore, it is assumed that the actual
maximum use of the resources of a radio interface without lowering the level of
the quality of service, will amount to about 50-80% [1].

The calculation of possible load in the downlink direction is similar to that
of the uplink direction with the addition of the orthogonality factor ξ, due to
the orthogonality provided by the OVSF (Orthogonal Variable Spreading Factor)
codes. In the WCDMA interface, OVSF codes are used to separate the down-
link direction channels transmitted from a single Node B. Thus, the capacity is
expressed in the percentage usage of the radio interface and can be calculated
as follows [1]:

ηDL ≥ (1 + δ̄ − ξ)
M∑
i=1

Lini. (5)

Conventionally, the orthogonality factor is between 0.4 and 0.9 [1].
In the considerations presented in the paper we have assumed that the influ-

ence of interference on the flow capacity of the WCDMA radio interface can be
determined by the pair of the parameters δ̄ and ξ.

172 D. Parniewicz et al.

3 Model of the System

The WCDMA interface in an UMTS network can be treated as the full-availability
group (FAG) with multi-rate traffic. Let us assume that the total capacity of the
group is equal to V Basic Bandwidth Units (BBUs) [13]. The group is offered M in-
dependent classes of Poisson traffic streams, having the intensities: λ1, λ2, ..., λM .
The class i call requires ti BBUs to set up a connection. The holding time for
calls of particular classes has an exponential distribution with the parameters:
µ1, µ2, ..., µM . Thus, the mean traffic offered to the system by the class i traffic
stream is equal to:

ai =
λi

µi
. (6)

The demanded resources in the group for servicing particular classes can be
treated as a call demanding an integer number of BBUs. The value of BBU,
i.e. tBBU , is calculated as the greatest common divisor (GCD) of all resources
demanded by traffic classes offered to the system:

LBBU = GCD(L1, ..., LM), (7)

where Li is load factor for a user of the class i call (Tab.1), defined in Eq. (3).
The multi-dimensional Markov process in the FAG can be approximated by

the one-dimensional Markov chain which can be described by Kaufman-Roberts
recursion [14, 15]:

nP (n) =
M∑
i=1

aitiP (n − ti), (8)

where P (n) is the probability of state of n BBUs being busy, and ti is the number
of BBUs required by a class i call:

ti =
⌊

Li

LBBU

⌋
. (9)

On the basis of Formula (8), the blocking probability Bi for the class i stream
can be expressed in the following form:

Bi =
V∑

n=V −ti+1

P (n), (10)

where V is defined as follows:

V =

{
ηDL

1+δ−ξ
for downlink direction,

ηUL

1+δ
for uplink direction.

(11)

In Eq. (11) ηDL and ηUL are the physical capacity of the WCDMA interface in
the downlink and in the uplink direction, respectively [4].

An Approximate Model of the WCDMA Interface 173

In the proposed analytical model we assume that the arrival of a new call
with a higher priority can, in the case of the lack of free resources, terminate the
currently serviced connections with a lower priority. Additionally, we assume in
the model:

– all classes offered to the system are designated by priorities,
– each of the classes is characterized by a different priority,
– the first class (class 1) is characterized by the highest priority, whereas the

last class (class M) has the lowest priority,
– traffic from the lower priority class does not have any influence on the block-

ing probability of the higher priority class (i.e. separation of the classes).

The blocking probability for class i in the FAG which services j traffic classes
can be calculated as follows:

([B1]j , ..., [Bi]j) = f((a1, t1), ..., (aj , tj)), (12)

where j ∈ {1, .., M}. The function f can be determined on the basis of Eqs. (8)
and (10).

The following notation has been adopted in the paper: [xi]j in which the direct
index to the parameter x, i.e. i, determines the traffic class, while the index j
outside the brackets denotes the number of serviced classes in the system.

3.1 Systems with Two and Three Priorities

Assume that the FAG services three classes of calls, in which the first, in line
with the adopted notation, has the highest priority and second and third class
has the lower and the lowest priority, respectively.

Thus, in the system with two priorities the calls of the second class (with the
lower priority) do not influence the service of the calls of the first class (with the
higher priority). In the system with three priorities the calls of the third class
(with the lowest priority) do not influence the service of the calls of the second
class (with the lower priority) and the first class (with the highest priority), and
the calls of the second class do not influence the service of the calls of the first
class (with the highest priority).

Consider now five systems of the FAG. The first system is assumed to service
only calls with the highest priority. In the second system, without priorities, the
FAG services two parallel classes of calls and the third system services three
parallel classes of calls, without priorities, while the forth and fifth systems
carried two and three classes of calls with priorities, respectively.

System 1. The FAG Carrying Only One Traffic Class. The blocking
probability in the first system can be described in the following way:

[B1]1 = f(a1, t1). (13)

After determining the blocking probability, it is possible to define the total traffic
carried, i.e. the carried traffic of the first class calls:

[Y]1 = [Y1]1 = a1t1(1 − [B1]1). (14)

174 D. Parniewicz et al.

System 2. The FAG without Priorities Carrying Two Traffic Classes.
The blocking probabilities in the system can be calculated in the following way:

([B1]2, [B2]2) = f ((a1, t1), (a2, t2)) , (15)

and the total traffic carried by the system:

[Y]2 =
2∑

k=1

[Yk]2 =
2∑

k=1

aktk(1 − [Bk]2). (16)

System 3. The FAG without Priorities Carrying Three Traffic Classes.
The blocking probabilities in the system can be calculated in the following way:

([B1]3, [B2]3, [B3]3) = f ((a1, t1), (a2, t2), (a3, t3)) , (17)

and the total traffic carried by the system:

[Y]3 =
3∑

k=1

[Yk]3 =
3∑

k=1

aktk(1 − [Bk]3). (18)

In Formulas (14), (16) and (18), the parameter [Y]j determines the total traffic
carried in a system servicing j classes of calls, while [Yi]j defines the carried
traffic of class i in a system servicing j classes of calls.

System 4. The FAG with Priorities Carrying Two Traffic Classes. As it
was mentioned earlier in the description of the FAG with two classes of calls and
with priorities, the service of calls with the lower priority, i.e. the second class,
does not influence the service of calls with the higher priority, i.e. the first class.
Thus, the blocking probability and carried traffic of the first class will always be
the same as in System 1, carrying one class of calls:

[B1]P2 = [B1]1, (19)

and
[Y1]P2 = [Y1]1. (20)

The upper index P outside the brackets in Formulas (19) and (20) indicates a
system with priorities.

The operation of the system with priorities is based on the fact that calls with
a higher priority, in the case of the lack of free resources, push out the calls with
a lower priority, i.e. force the termination of service with a lower priority, and
then occupy the resources released by the calls of a lower class. In such a mode
of operation, it can be assumed that the total traffic carried in a system without
priorities (System 2) is identical to the traffic carried in a system with priorities
(the traffic conservation law). Thus, we can write:

[Y]P2 = [Y]2, (21)

or
[Y1]P2 + [Y2]P2 = [Y]2. (22)

An Approximate Model of the WCDMA Interface 175

In Formula (22), the total traffic carried [Y]2 in the system without priorities
is known (Eq. (16)). The characteristics for the traffic of the first class with
the higher priority are also known (Eqs. (19) and (20)). Hence, on the basis of
Eqs. (20) and (22), traffic [Y2]P2 can be determined in the following way:

[Y2]P2 = [Y]2 − [Y]1. (23)

Let us notice that the traffic of the second class in the system with priorities
is determined by the difference between the total traffic carried in the system
without priorities (System 2) and the total traffic carried in the system with one
class of calls (System 1). Taking into consideration the following dependency:

[Y2]P2 = a2t2(1 − [B2]P2). (24)

and substituting Eq. (24) to (23), we can determine the blocking probability for
the second class of calls in the system with priorities:

[B2]P2 =
a2t2 − [Y1]2 + [Y1]1

a2t2
. (25)

The formula, with Eqs. (14) and (16) taken into consideration, can be eventually
written in the following form:

[B2]P2 =
a1t1([B1]2 − [B1]1) + a2t2[B2]2

a2t2
. (26)

Thus, observe the fact that, similarly to the carried traffic of the second class
(Eq. (23)), the blocking probability of calls of the second class (with the lower
priority) can be determined on the basis of the blocking probabilities in System 1
and System 2.

System 5. The FAG with Priorities Carrying Three Traffic Classes. In
the the FAG with three classes of calls and with priorities, the calls with the
lowest priority, i.e. the third class, does not influence the service of calls with a
higher priority, i.e. the first and the second class. The calls of the first class have
the priority higher than the calls of the second class. So, the blocking probability
and traffic carried for the first and the second class will always be the same as
in the System 4, carrying two classes of calls with priorities:

[B1]P3 = [B1]P2 = [B1]1, (27)

[Y1]P3 = [Y1]P2 = [Y1]1, (28)

[B2]P3 = [B2]P2 . (29)

[Y2]P3 = [Y2]P2 = [Y]2 − [Y]1. (30)

176 D. Parniewicz et al.

The operation of the system with priorities is based on the fact that calls with
a higher priority, in the case of the lack of free resources, push out the calls with
a lower priority and it can be assumed that the total traffic carried in the system
without priorities (System 3) is identical to the traffic carried in the system with
priorities (the traffic conservation law). Thus, we can write:

[Y]P3 = [Y]3, (31)

or
[Y1]P3 + [Y2]P3 + [Y3]P3 = [Y]3. (32)

In Formula (32), the total traffic [Y]3 carried in the system without priorities is
known (Eq. (18)). The characteristics for the traffic of the first and second class
are also known (Eqs. (27), (28), (29) and (30)). Hence, on the basis of Eqs. (28),
(30) and (32), traffic [Y3]P3 can be determined in the following way:

[Y3]P3 = [Y]3 − [Y]2. (33)

The traffic of the third class in the system with priorities is determined by the
difference between the total traffic carried in the system with three classes of
calls (System 3) and the total traffic carried in the system with two classes of
calls (System 2). Taking into consideration the dependency:

[Y3]P3 = a3t3(1 − [B3]P3). (34)

and substituting Eq. (34) to Eq. (33), we can calculate [B3]P3 :

[B3]P3 =
a3t3 − [Y]3 + [Y]2

a3t3
. (35)

The formula can be also written in the following form (Eqs. (16) and (18)):

[B3]P3 =
a1t1([B1]3 − [B1]2) + a2t2([B2]3 − [B2]2) + a3t3[B3]3

a3t3
. (36)

Thus, the blocking probability of calls of the third class (with the lowest priority)
can be determined on the basis of the blocking probabilities in System 2 and 3.

3.2 System with n Priorities

Let us discuss FAG with priorities carrying M traffic classes. The system can be
then presented as an n−1 step calculational algorithm, in each step, the system
with two priorities is considered.

In the first step, the calls of the lowest priority (an), under the assumption
that the remaining classes of calls (a1, ..., an−1) have a higher priority and push
out the calls of class n, are considered. In the successive steps, the traffic of class
k (ak) has the lowest priority, while the remaining traffic classes (a1, ..., ak−1)
have a higher priority and can push out traffic of class k.

An Approximate Model of the WCDMA Interface 177

Hence, to facilitate similar considerations as with the case of the system with
two priorities, we can determine the blocking probability for calls of class k with
M − k + 1 priority on the basis of the following formula:

[Bk]Pk =
aktk[Bk]k +

∑k−1
i=1 aiti ([Bi]k − [Bi]k−1)

aktk
. (37)

Following the above considerations, the algorithm for blocking probability cal-
culations may be written as follows:

1. Calculation of offered traffic ai of class i calls (Eq. (6)).
2. Determination of the value of LBBU as the greatest common divisor (Eq. (7)).
3. Calculation of the value of ti as the integer number of demanded resources

for class i (Eq. (9)).
4. Setting up the initial value of j: j = M
5. Determination of the values of blocking probabilities in the FAG for j traffic

classes (Eq. (12)).
6. Decreasing the value of j: j = j − 1, and if j > 0, return to step 5.
7. Determination of the values of the blocking probabilities for all traffic classes

in the FAG with priorities based on (Eq. (37).

4 Numerical Examples

The proposed analytical model of the WCDMA interface with priorities is an
approximate model. Thus, the results of a analytical calculations of the WCDMA
have been compared with the results of a simulation experiments.

The study was carried out for users demanding a set of services (Tab. 1) in
the uplink direction and it was assumed that:

– a call of the particular services demanded t1 = 53, t2 = 53, t3 = 257 and
t4 = 503 BBUs,

– the services were demanded in the following proportions:
a1 t1 : a2 t2 : a3 t3 : a4 t4 = 10 : 1 : 1 : 1,

– the LBBU was equal to 0.0001,
– the maximum uplink direction load were set to 50% of the theoretical ca-

pacity (Eq. (11)):

VUL =
⌊

V

LBBU

⌋
=

⌊
50%

0.0001

⌋
= 5000BBUs.

Figures 2 and 3 show the results obtained for the traffic classes presented in
Tab. 1. Fig. 2 presents the results for the WCDMA radio interface which serviced
a mixture of multi-rate traffic with priorities, whereas Fig. 3 shows the results for
the WCDMA radio interface which serviced a mixture of the multi-rate traffic
streams without priorities. The values of the blocking probabilities presented in
Fig. 2 correspond to the priorities of particular classes, i.e. the higher priority,
the lower value of the blocking probability. Comparing the results presented in

178 D. Parniewicz et al.

10-3

10-2

10-1

100

 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

bl
oc

ki
ng

 p
ro

ba
bi

lit
y

offered traffic per BBU in the system [Erl]

calculation - data
simulation - data

calculation - video
simulation - video
calculation - voice
simulation - voice

calculation - emergency call
simulation - emergency call

Fig. 2. Blocking probability for traffic classes presented in Tab. 1. with priorities

10-3

10-2

10-1

100

 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

bl
oc

ki
ng

 p
ro

ba
bi

lit
y

offered traffic per BBU in the system [Erl]

calculation - data
simulation - data

calculation - video
simulation - video
calculation - voice
simulation - voice

calculation - emergency call
simulation - emergency call

Fig. 3. Blocking probability for traffic classes presented in Tab. 1. without priorities

Figs. 2 and 3 makes it noticeable that the value of blocking probability is lower
in the system with priority only for the class with the highest priority (emergency
call) and the blocking probabilities for other traffic classes are higher.

The accuracy of the blocking probabilities for particular traffic classes ob-
tained for the system with priorities is less than respective accuracy in the sys-
tem without priorities. This difference results from the assumption taken on in
the model with priorities, i.e. the traffic carried in the system with priorities is
approximated by the traffic carried in the system without priorities. This as-
sumption was adopted in many analytical models with priorities [16,8,9] and, as
it was shown in numerous of simulation experiments, leads to acceptable, from
the engineering point of view, inaccuracy. Thus, also all the results presented in
Figs. 2 and 3 show the robustness of the proposed method for blocking probabil-
ity calculation. The research study was carried out also for different capacities

An Approximate Model of the WCDMA Interface 179

of the WCDMA interface and for different structures of the offered traffic. In
each case, regardless of the offered traffic load, the results are characterized by
fair accuracy.

For verification of the analytical results a simulation program based on the
Monte Carlo method [17] was used. The simulator of the full-availability group
servicing multi-rate traffic with and without priorities was implemented in C++
language. Each point of the plot shown in Figs. 2 and 3 is the average value
of blocking probabilities obtained in 5 series. In particular simulation series 107

of the incomming calls of the "oldest"2 class were offered. The results of the
simulations are shown in the charts in the form of marks with 95% confidence
intervals calculated after the t-Student distribution. 95% confidence intervals of
the simulation are almost included within the marks plotted in the figures.

5 Conclusions

The dimensioning process for the UMTS system should aim at determining such
a capacity of the elements of the system that will allow to, with the pre-defined
load of the system, ensure the assumed level of the Grade of Service. In the
dimensioning of the UMTS system, one of the most important characteristics is
the radio interface which can use priorities for services. The importance of the
implementation of priorities in the UMTS network, increases with the volume
of the load carried by the network. The priorities in the UMTS system are used
for determining the sequence in resource allocations. A decision on the priority
of a given service is made by the operator of the UMTS network who defines
its importance in the core network. Thus, the defined priority is carried out, by
admission/congestion control for Relase 99 [1] and scheduling for High Speed
Downlink Packet Access (HSDPA) [11] mechanisms, in the WCDMA interface.

The paper presents a new analytical model which allows blocking probability
determination for different traffic classes with priorities offered to the WCDMA
interface. In the proposed model we assume that the arrival of a new call with
a higher priority can, in the case of the fully occupied resources, terminate the
connections with a lower priority. In our considerations we use a new model of
the full-availability group with priorities for multi-rate traffic as a model of the
interface. The calculations are validated by simulation. The proposed method
can be easily applied to 3G network capacity calculations for the uplink and the
downlink directions.

References

1. Holma, H., Toskala, A.: WCDMA for UMTS. Radio Access For Third Generation
Mobile Communications. John Wiley and Sons, Ltd., Chichester (2000)

2. Staehle, D., Mäder, A.: An analytic approximation of the uplink capacity in a
UMTS network with heterogeneous traffic. In: Proccedings of 18th International
Teletraffic Congress (ITC18), Berlin, pp. 81–91 (2003)

2 The class which demands the highest number of BBUs.

180 D. Parniewicz et al.

3. Kwon, Y.S., Kim, N.: Capacity and cell coverage based on calculation of the er-
lang capacity in a WCDMA system with multi-rate traffic. IEICE Transactions on
Communications E87-B(8), 2397–2400 (2004)

4. Stasiak, M., Wiśniewski, A., Zwierzykowski, P.: Blocking probability calculation in
the uplink direction for cellular systems with WCDMA radio interface. In: Buch-
holtz, P., Lehnert, R., Pióro, M. (eds.) Proceedings of 3rd Polish-German Teletraffic
Symposium, Dresden, Germany, pp. 65–74. VDE Verlag GMBH, Berlin (2004)

5. Głąbowski, M., Stasiak, M., Wiśniewski, A., Zwierzykowski, P.: Uplink blocking
probability calculation for cellular systems with WCDMA radio interface and fi-
nite source population. In: Kouvatsos, D. (ed.) Proceedings of 2nd International
Working Conference on Performance Modelling and Evaluation of Heterogeneous
Networks (HET-NETs), Ilkley, Networks UK, pp. 80/1–80/10 (2004)

6. Głąbowski, M., Stasiak, M., Wiśniewski, A., Zwierzykowski, P.: Uplink blocking
probability calculation for cellular systems with WCDMA radio interface, finite
source population and differently loaded neighbouring cells. In: Proceedings of
Asia-Pacific Conference on Communications, Perth, pp. 138–142 (2005)

7. Koo, I., Kim, K.: Erlang capacity of multi-service multi-access systems with a
limited number of channel elements according to separate and common operations.
IEICE Transactions on Communications E89-B(11), 3065–3074 (2006)

8. Subramaniam, K., Nilsson, A.A.: An analytical model for adaptive call admission
control scheme in a heterogeneous UMTS-WCDMA system. In: Proceedings of
International Conference on Communications, vol. 5, pp. 3334–3338 (2005)

9. Subramaniam, K., Nilsson, A.A.: Tier-based analytical model for adaptive call
admission cntrol scheme in a UMTS-WCDMA system. In: Proceedings of Vehicular
Technology Conference, vol. 4, pp. 2181–2185 (2005)

10. Stasiak, M., Wiśniewski, A., Zwierzykowski, P.: Uplink and downlink blocking
probability calculation for cellular systems with WCDMA radio interface and finite
source population. In: Proceedings of 14th Polish Teletraffic Symposium, Gliwice,
Poland, pp. 99–110. Institute of Theoretical and Applied Informatics of the Polish
Academy of Sciences (2007)

11. Holma, H., Toskala, A.: HSDPA/HSUPA for UMTS: High Speed Radio Access for
Mobile Communications. Wiley and Sons, Chichester (2006)

12. Laiho, J., Wacker, A., Novosad, T.: Radio Network Planning and Optimization for
UMTS, 2nd edn. John Wiley and Sons, Ltd., Chichester (2006)

13. Roberts, J., Mocci, V., Virtamo, I. (eds.): Broadband Network Teletraffic, Final
Report of Action COST 242. Commission of the European Communities. Springer,
Berlin (1996)

14. Kaufman, J.: Blocking in a shared resource environment. IEEE Transactions on
Communications 29(10), 1474–1481 (1981)

15. Roberts, J.: A service system with heterogeneous user requirements—application
to multi-service telecommunications systems. In: Pujolle, G. (ed.) Proceedings of
Performance of Data Communications Systems and their Applications, pp. 423–
431. North Holland, Amsterdam (1981)

16. Katzschner, L.: Loss sytstems with displacing priorities. In: Proccedings of 6th In-
ternational Teletraffic Congress (ITC6), Munchen, Germany, pp. 224II–224 (1970)

17. Rubinstein, R.Y., Kroese, D.P.: Simulation and the Monte Carlo Method, 2nd edn.
Wiley Series in Probability and Statistics. Wiley-Interscience, Chichester (2007)

Performance Analysis of Dynamic Priority

Shifting

Philipp Reinecke, Katinka Wolter, and Johannes Zapotoczky

Humboldt-Universität zu Berlin
Institut für Informatik

Berlin, Germany
{preineck,wolter,jzapotoc}@informatik.hu-berlin.de

Abstract. We investigate the benefit of priority shifting for resource
allocation in systems with a shared resource, where higher priority im-
plies better service. Priority schemes where priority levels are assigned
fixed shares of the resource experience underutilisation if there are only
low-priority tasks present. In these situations, lower priority tasks can be
‘shifted up’ to higher priority. This increases overall system utilisation
and improves the service experienced by low-priority tasks. We present a
shifting framework, study its properties and develop a Petri net model for
a shifting algorithm. We analyse the model in order to identify situations
where shifting of priorities is beneficial.

1 Introduction

Dynamic priority assignment is a well-known concept from real-time systems
where a schedule is defined according to the priorities of all jobs in the system.
A job’s priority typically is set to assure that the deadline is met [1]. In pursuit
of this target task priorities may be modified during runtime of the task, shifting
priorities up and down. A characteristic of real-time systems is that resources
are used up to full capacity at all times and the resource share provided to an
individual task is not constant over time.

The systems considered in this paper also employ dynamic priority assignment
and dynamic resource allocation. However, they are different from real-time sys-
tems in several respects. Priorities implement differences in requirements of e.g.
different applications, and may correlate with a difference in the price paid for
a task’s execution. Priority assignment typically is intended to be constant for
each task, and no mechanisms for re-allocation of unused resources exist. As a
consequence, the systems do not always fully utilise their available resources.

In such systems manipulation of priorities may be beneficial, as it not only can
improve the service provided to individual tasks but may also prevent resource
underutilisation.

Looking at different types of resource-sharing systems we want to identify
those that are amenable to manipulation of priorities. Computer networks are
an example as they share communication channels among several users. While
in wired networks today the transmission capacity is no longer a scarce resource

N. Thomas and C. Juiz (Eds.): EPEW 2008, LNCS 5261, pp. 181–196, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

182 P. Reinecke, K. Wolter, and J. Zapotoczky

that needs to be allocated carefully, in wireless networks this is still often the
case. The different wireless technologies use different resource allocation mecha-
nisms. While UMTS and Bluetooth always distribute all available transmission
capacity [2,3], the Quality-of-Service (QoS) enabled extension of wireless LAN
has a fixed, priority-based medium access mechanism that does not necessarily
use all available channel capacity [4]. Another area where there may be interest in
priority shifting could be computational grids, where tasks are assigned to nodes
in the grid following some assignment scheme [5,6]. One may want to consider
different priority classes of tasks that are assigned to nodes of different compu-
tational power. The bronze/silver/gold priority classes considered here present
an example for adaptive, pricing-based task assignment in computational grids.

In general, we assume that agents execute jobs using a shared resource, such as
a communication link. The agent’s priority determines the access to the shared
resource. A higher priority implies more aggressive access to the resource. Lower
priorities do not make use of all available resource capacity, leaving room for
higher priority access. If no high priority jobs are present in the system, some
share of the resource remains unused and one may consider shifting all jobs up
in priority. This indeed increases resource utilisation and in many cases service
quality for the jobs [7,8]. We extend the work already presented in [7] by pro-
viding a general theoretical treatment of priority shifting and deriving a set of
criteria for priority shifting. Furthermore, we present a Petri net model of a
shifting algorithm. Although the IEEE 802.11e WLAN standard serves as an
illustrating example for the application of the model, the Petri net is not lim-
ited to this protocol and may be employed in the evaluation of priority shifting
algorithms in general.

This paper is structured as follows: In Section 2 we present a general definition
of priority shifting in an arbitrary context, discuss limitations and derive a set
of criteria for the applicability of priority shifting. We then review two instances
where priorities are used to provide differing levels of service. In Section 3 we
present a stochastic Petri net model for priority shifting. We employ this model
in an analysis of priority shifting in the IEEE 802.11e WLAN standard [4] as an
example. A summary and an outlook on future work conclude the paper.

2 Priority Shifting

Priority schemes are employed in many resource sharing scenarios. The schemes
we consider aim to assure a certain QoS standard for tasks with higher priority
by providing them with privileged access to the shared resource. Assigning a
static quantum of the resource to higher priorities may in the absence of high
priority tasks result in underutilisation of the resource. Then, better QoS may be
provided to lower-priority tasks by shifting them into the vacant higher priorities.
The approach we study here maintains the relative order of priorities, i.e. tasks
can only be shifted to priorities not occupied by higher priority tasks, and tasks
cannot overtake occupied higher priorities.

Performance Analysis of Dynamic Priority Shifting 183

We formalise the problem as follows: Given K + 1 priority classes 0, 1, . . . , K,
the vector MN = (m0, m1, . . . , mK) represents the assignment of N =

∑K
i=0 mi

tasks to the K +1 priority classes, and MN is the set of all possible assignments
for N tasks.

We use stochastic ordering [9] on the set of task–priority assignments MN to
define successful shifts:

MN ≤st M ′
N : ⇔ 1 − Pr {MN ≤ K − k} ≤ 1 − Pr {M ′

N ≤ K − k}
for k = 0, . . . , K,

where

Pr {MN ≤ K − k} :=
∑k

i=0 mK−i

N
.

Let sk(MN) denote the level of service provided to each priority class k, given
that the N tasks are assigned to priorities as specified by MN . Priorities are
strictly ordered by their level of service and listed in descending order, that is,
∀k : sk+1(MN) < sk(MN). This implies that 0 and K are the highest and
lowest priorities, respectively. The total service provided is denoted by S :=∑K

k=0 mksk(MN). In the following we assume that all service functions sk grow
monotonously in MN , i.e. that for all MN , M ′

N ∈ MN :

MN ≤st M ′
N ⇒ ∀k : sk(MN) ≤ sk(M ′

N) .

Furthermore, let R(MN) denote the total resource utilisation for N tasks allo-
cated to priorities as given in MN . The definition of R obviously depends on the
scenario. In the following we consider R only in terms of some of its properties.

We discuss priority shifting in terms of a shift operator defined on the set of
task allocations MN . We will start with the following abstract definition of a
shifting operator:

shift(M1
N) ∈

{
M2

N ∈ MN | M1
N ≤st M2

N

}
,

which denotes an operator returning a set of stochastically greater or equal task
allocations for a given allocation M1

N .

Example 1. Let us illustrate these concepts using a small example: For K = 4
(i.e. 5 priorities) and N = 6, M1

6 = (0, 2, 3, 0, 1), M2
6 = (2, 3, 0, 1, 0) and M3

6 =
(3, 2, 0, 0, 1) are potential allocations. We observe that M1

6 ≤st M2
6 , since:

1 − Pr{M1
6 ≤ 0} = 1 − 1/6 = 5/6

1 − Pr{M1
6 ≤ 1} = 1 − 1/6 = 5/6

1 − Pr{M1
6 ≤ 2} = 1 − 4/6 = 1/3

1 − Pr{M1
6 ≤ 3} = 1 − 6/6 = 0
1 − Pr{M1

6 ≤ 4} = 0

1 − Pr{M2
6 ≤ 0} = 1

1 − Pr{M2
6 ≤ 1} = 1 − 1/6 = 5/6

1 − Pr{M2
6 ≤ 2} = 5/6

1 − Pr{M2
6 ≤ 3} = 1 − 4/6 = 1/3

1 − Pr{M2
6 ≤ 4} = 0 .

On the other hand, the stochastic order does not hold for M2
6 and M3

6 :

184 P. Reinecke, K. Wolter, and J. Zapotoczky

1 − Pr{M3
6 ≤ 0} = 5/6

1 − Pr{M3
6 ≤ 1} = 5/6

1 − Pr{M3
6 ≤ 2} = 5/6

1 − Pr{M3
6 ≤ 3} = 1 − 3/6 = 1/2

1 − Pr{M3
6 ≤ 4} = 0,

i.e. for k = 4, 1 −Pr{M2
6 ≤ K − k} > 1 −Pr{M3

6 ≤ K − k}. Consequently, M3
6

cannot be derived from M2
6 in a regular shift, i.e. M3

6 �∈ shift(M2
6). Note that

M1
6 ≤st M2

6 and M1
6 ≤st M3

6 but M2
6 �≤st M3

6 . ��

2.1 Applicability Criteria

To ease the further discussion we stipulate a set of criteria for priority schemes
in which priority shifting is applicable:

1. Several parties contend for access to a shared resource. Access is regulated
by fixed priorities assigned to the parties.

2. There is no mechanism to redistribute unused service capacity to jobs from
other priorities. Formally, this means that for a task allocation MN there
exists another allocation M ′

N ∈ shift(MN), MN <st M ′
N that provides a

higher total level of service S(M ′
N) > S(MN).

3. Resource use incurs no or only marginal external costs. This is required be-
cause usually resource utilisation grows monotonously in MN . i.e. MN ≤st

M ′
N ⇒ R(MN) ≤ R(M ′

N) and higher priority implies higher resource usage.
Obviously, the increased resource utilisation that results from providing bet-
ter service must not increase the costs of the service, otherwise cost would
need to be an additional parameter in priority shifting algorithms.

4. The overhead of shifting is negligible. This is particularly important where
tasks may enter or leave the system at any time, i.e. where shifting (to provide
better service to low-priority tasks) and unshifting (to guarantee a high level
of service to newly arriving high-priority tasks) may happen frequently.

2.2 Interesting Properties of Shift Operators

Before providing constructive definitions for two shift operators, we will first
discuss a number of interesting properties of shift operators in general. First,
we may be interested in whether the shifting operator preserves ‘gaps’ between
occupied priorities. For an allocation MN , let

ZN := {i | mi = 0; i = 0, . . . , K}

denote the set of priorities which are empty in MN , i.e. those priorities at which
no task is being served. In our running example Z1

6 = {0, 3} . We call a shifting
algorithm gap-preserving, if and only if it preserves the length of gaps between
occupied priorities, that is, iff for all M2

N ∈ shift(M1
N)

Z2 =
{
i + σ | i ∈ Z1

}
holds (where σ is the number of steps of the shift).

Performance Analysis of Dynamic Priority Shifting 185

The gap preservation property also touches upon the question whether tasks
are shifted ‘en bloc’ or ‘one by one.’ With ‘en bloc’ shifting, all tasks from one
priority are shifted up at once, whereas ‘one by one’ shifting is performed for
one task at a time and only eventually results in all tasks at the higher priority.

Finally, an interesting property is the distance tasks jump up (or down) in the
priorities. Shifting occurs in one-step fashion if tasks move by only one priority
level at a time, and in skip (or n-step) fashion else (σ = 1 and σ > 1, respectively,
for a gap-preserving operator).

2.3 Some Shift Operators

We will first define an atomic one-step shift operator. Atomic one-step shifting
is the shifting of one task to the next higher free neighbouring priority. Atomic
n-step shifting then consists in a sequence of several one-step shifts at once.

The atomic one-step shifting does not violate the stochastic order of the shift-
ing procedure as we will briefly show. Let M1

N = (m0, . . . , mj , mj+1, . . . , mK).
Then the one-step shifted configuration is M2

N = (m0, . . . , mj + 1, mj+1 −
1, . . . , mK) and we have to show that M1 ≤st M2. We do so by showing that

Pr
{
M2

N ≤ K − k
}
≤ Pr

{
M1

N ≤ K − k
}

.

For the unshifted and the shifted vector we need to compute(∑k
i=0 mK−i

N

)
k=1,...,K

.

For k < K−j the two vectors are identical. The first term we consider is therefore
mj+1, where k = K − (j + 1) and

Pr
{
M2

N ≤ (j + 1)
}

=
∑K−(j+1)

i=0 m2
K−i

N
=∑K−(j+1)

i=0 m1
K−i − 1

N
≤ Pr

{
M1

N ≤ (j + 1)
}

.

Similarly, for mj , where k = K − j we can easily see that

Pr
{
M2

N ≤ j
}

=
∑K−j

i=0 m2
K−i

N
=∑K−(j+2)

i=0 m1
K−i + (m1

j+1 − 1) + (m1
j + 1)

N
=

∑K−j
i=0 m1

K−i

N
= Pr

{
M1

N ≤ j
}

.

For all k > K − j we have m1
k = m2

k again and thus the stochastic order holds.
The atomic n-step shift can be defined as a sequence of atomic one-step shifts,
which again does not violate the stochastic order.

Second, we define a gap-preserving, ‘en-bloc’, one-step shift operator: Let ZN

be defined as above. If 0 ∈ Z1
N (i.e. the highest priority is empty), we can move

186 P. Reinecke, K. Wolter, and J. Zapotoczky

all tasks up by one priority, or, alternatively, shift all zeros in the index list down
by one:

Z2
N :=

{
i + 1 | i ∈ Z1

N , i < K
}

.

The one-step shift-operator is thus defined as

M2
N = shift(M1

N) := (m2
0, m

2
1, . . . , m

2
K),

where

m2
i =

{
m1

i+1 i < K

0 i = K
.

It is obvious from this definition that M1
N ≤st M2

N :

1 − Pr{M1
N ≤ K − k} = 1 −

∑k
i=0 m1

K−i

N
≤ 1 −

[∑k−1
i=0 m1

K−i

N
+ 0

]
=

1 −
∑k

i=0 m2
K−i

N
= 1 − Pr{M2

N ≤ K − k},

i.e. the before/after pairs M1
N , M2

N generated by this operator can always be
ordered using stochastic ordering.

A skip-fashion operator can be constructed by repeated application of the
one-step operator and restricting the output to allocations M l

N in which the
highest priority is occupied, i.e. 0 �∈ Zl

N .

2.4 IEEE 802.11e WLAN Access Categories

The IEEE 802.11e standard [4] for quality of service enhanced wireless LAN
offers both contention-based and contention-free channel access strategies sim-
ilar to the original standard IEEE 802.11 [10]. As it is more common, we will
only consider the contention-based enhanced distributed channel access (EDCA),
however, priority shifting may also be applied to the contention-free strategy.

IEEE 802.11e EDCA defines four access categories (for Voice, Video, Best
Effort and Background transmission). The standard implements the priorities
by a dedicated choice of parameter values for the different access categories.
Medium access is primarily determined by the values of the arbitration inter-
frame space (AIFS), the time a station needs to wait before transmitting to
a free channel, and the contention window size, from which the backoff timer,
used to avoid collisions, is randomly drawn. Those two parameters determine
the differing length of idle times for the different priorities, which is the cause
for varying throughput across priorities.

Priority-based medium access as defined in IEEE 802.11e corresponds nicely
to our set of criteria:

1. In a wireless LAN, typically several stations contend for access on the wireless
medium. The parameters for QoS implementation on the CSMA-CA scheme
are fixed and prescribed in the standard.

Performance Analysis of Dynamic Priority Shifting 187

2. If the access category with highest priority (voice) is not used, this has no
effect on the parameters or distribution of the other access categories.

3. Usage of WLAN resources, irrespective of possible costs on a backbone to
other networks, typically incurs no external costs.

4. The overhead of shifting depends on the shifting strategy and on the number
of participating stations. The non-invasive mechanism proposed in [7] uses
the type-of-service (TOS) field in the IP header, which is interpreted by
802.11e-capable WLAN drivers. Setting the TOS field, however, involves
only a negligible delay.

Without using the highest priority, not the full capacity will be utilised. Based
on this observation, [11,7] propose approaches for dynamic priority shifting. The
interesting question is, of course, whether priority shifting is beneficial to the
service of individual stations and the network as a whole. Of course, this depends
on the priorities used by stations in the network. It also depends on the number
of stations in the network. Higher priorities have on the average less waiting
times and therefore a higher probability of collision for the same number of
active stations in the network. At some point more frequent collisions cancel out
the benefit of lower waiting times.

The service capacity Ŝ has no proportional partitioning in 802.11e. The dis-
tribution of Ŝ among configurations MN of N stations depends primarily on the
access category-specific QoS parameters (AIFS and the backoff time).

In [12] an analytical model for the probability of successfully transmitting data
is formulated for two priority classes. This model would have to be generalised
to all four priority classes and could then be used to determine the channel
throughput as service function sk. However, combinatorial complexity makes
this a challenging task which we leave for future work.

In this paper we adopt an empirical approach and approximate the service
function for the IEEE 802.11e protocol by fitting a curve to simulation data (cf.
(1) in Section 4).

2.5 Economic Feasibility of Priority Shifting

In some settings, providers offer higher priorities at a higher price. For instance,
2/3 and 2/9 of the available service capacity Ŝ may be reserved for gold and silver
customers (priorities 0 and 1), respectively, while the rest (1/9Ŝ) is available
for bronze customers. All customers in one class share the capacity equally,
e.g. a gold customer receives service s0 = 2/3m0Ŝ. The provider prices services
according to the allocated resources: Bronze service is provided free of charge,
while silver and gold services are progressively more expensive.

Then, an interesting question is: Is it economically feasible for the provider
to apply shifting to improve customer satisfaction? That is: Why should any
customer pay for the service if (due to shifting) the same may be available for
free? Let us consider the case that we have m00 gold customers that would pay,
and m20 customers who enjoy gold service, but are not willing to pay. That
is, the m20 customers are satisfied with whatever service they get. Then, the

188 P. Reinecke, K. Wolter, and J. Zapotoczky

potential gold customers have an incentive to pay for gold service if they receive
better service being served at gold priority, exclusively:

2
3(m00 + m20)

Ŝ <
2

3m00
Ŝ,

which is obviously the case for m20 > 0, which implies that as soon as one
free-rider is present in the system, gold customers have an incentive to pay. In
contrast, consider silver customers (m11) enjoying gold service together with a
number of non-paying customers (m20):

2
3(m11 + m20)

Ŝ <
2

9m11
Ŝ .

Here, m20 > 2m11, i.e. potential silver customers will prefer to pay for silver
service only if there are more than twice as many free-riders than potential
silver customers present.

3 The Petri Net Model

In order to analyse dynamic priority shifting we use a stochastic Petri net
model of a shifting algorithm for four priorities. We employ the Petri net tool
TimeNET [13] in the construction and analysis of the model. Since the full model
is too complex for inclusion here, we discuss its structure using a simplified two-
priority version and refer the reader to the appendix for the full model.

Figure 1 presents the simplified model. We model tasks as tokens and priority
levels as places. The parameter N gives the maximum number of tasks. There
are three kinds of places: waiting places (upper centre) model a waiting state
that tasks enter if they cannot be served at their nominal priority. This situa-
tion occurs when the nominal priority is occupied or blocked by a shifted lower
priority task. Tasks executed at their nominal priority are modelled as markings
on normal places. Shifted places (lower centre) model shifted tasks.

We distinguish transitions according to their function. First, the enter and
depart transitions (upper left and centre left, respectively) model tasks enter-
ing and leaving the system. There is one enter transition for each priority level.
Since tasks can depart if they are being served at their normal priorities and at
any of the shifted priorities, there is one depart transition assigned to each of
the places modelling task execution at a certain priority. The shift and unshift
transitions (lower left and upper right) model the shifting and unshifting of tasks.
Shifting transitions move tasks from lower to higher priorities whenever higher
priorities are not occupied. These transitions are connected to the respective
higher-priority places by inhibitor arcs, to ensure that tasks neither overtake
each other nor move to priorities occupied by higher-priority tasks. Unshifting
transitions move shifted lower-priority tasks down to their waiting priority level
if higher-priority tasks enter. The assign transitions (lower right) assign tasks
from the waiting state to their nominal priorities, as soon as the nominal prior-
ities are available (again accomplished by inhibitor arcs).

Performance Analysis of Dynamic Priority Shifting 189

Fig. 1. Petri net model for priority shifting using two priorities

In the full model (see the appendix), places and transitions are grouped into
separate blocks according to their function. Note that the lowest priority does
not feature a waiting state.

3.1 Model Parameters

Table 1 presents an overview of the model parameters and their interpretation.
We will discuss these parameters according to the model aspects they affect. We
start with the parameters controlling the basic functionality of the system, i.e.
the execution of tasks: The marking N on the Capacity place models the maxi-
mum number of tasks in the system. The firing delays of the entering transitions
control the number of tasks in the system as well as the ratio between tasks of
different priorities. Delays of the departing transitions model how fast tasks are
completed at their nominal priority (i.e. without shifting).

All other parameters control the model of the shifting algorithm. Firing delays
of the shifting and unshifting transitions and the assignment transitions model
overhead during shifting and unshifting. The delay of the depart10 transition
models how fast tasks are executed when shifted to a higher priority (for instance,
tasks of priority 1 may finish faster when shifted to priority 0). Finally, the
marking on the InhibitShifting place controls whether the shifting algorithm
is applied at all. The parameter values are discussed with the model analysis in
Section 4.

3.2 Model Characteristics and Limitations

The Petri net employed here models a non-gap-preserving shifting algorithm
with random atomic n-step shifting. That is, each individual task is shifted on
its own and the target priority is selected randomly with uniform probability

190 P. Reinecke, K. Wolter, and J. Zapotoczky

Table 1. Model parameters and interpretation

Parameter Interpretation

Markings and places

N Maximum number of tasks.
InhibitShifting Controls whether shifting is applied.

Delays

Entering transitions Control the priority mix presented to the system.
Departing transitions Model the job length (service time per task per pri-

ority).
Shifting/Unshifting transitions Model delays in the shifting algorithm, e.g. manage-

ment overhead.
Assignment transitions Used to model additional management overhead

during assignment of higher priority tasks.

from all available higher priorities. From there the task will eventually arrive at
the highest free priority.

We chose a non-gap-preserving model since its structure is still relatively
simple. Even for this model numerical complexity only allows for an analysis
with up to 7 stations. We also constructed a version of the model wherein all
lower-priority tasks are shifted at the same time (using marking-dependent arcs),
i.e. an ‘en bloc’ shifting operator. Unfortunately, technical difficulties precluded
an analysis of this model.

Job Length Distribution. The length of jobs presented to the system can
be adjusted through the rates of the depart transitions. However, it should be
noted that when using the shifting algorithm the actual job length in the model
does not follow an exponential distribution, even though the depart transitions
have exponentially distributed delays. This is a result of the shifting and un-
shifting, which results in the depart transitions losing their activation before
expiry of the firing delay. While we cannot delve into a detailed examination of
the phenomenon here, preliminary results suggest that job lengths are best de-
scribed by cyclic continuous-time phase-type distributions (CPH) of increasing
order for lower priorities. Analysis and parameter fitting of the CPHs would be
necessary to determine (or set) the precise job length distribution.

4 Analysis

We employ the model in a case study of priority shifting in an IEEE 802.11e
wireless LAN. In order to do so, we must determine values for each of the pa-
rameters listed in Table 1. We arbitrarily assume a delay of 1 s for all shift-
ing/unshifting and assignment transitions. We consider transmissions with a
mean length of 100 s in all access categories (i.e. transmissions do not finish faster

Performance Analysis of Dynamic Priority Shifting 191

Table 2. Priority Mixes for IEEE 802.11e Priority Shifting Analysis

λenter0 λenter1 λenter2 λenter3

P1 10/16 3/16 2/16 1/16

P2 1/4 1/4 1/4 1/4

P3 1/16 2/16 3/16 10/16

when executed at higher priority, which is reasonable for e.g. video streams).
Since the most powerful available machine (having 16 AMD64 CPUs and 32GB
RAM) was only able to solve up to a few thousand states, we could only analyse
the model for N = 1, . . . , 7 stations.

We study three priority mixes, modelled by the rates of the entering tran-
sitions, as shown in Table 2. The first mix (P1) is dominated by high-priority
stations, while the third mix consists mostly of low-priority stations. The second
mix represents an equal distribution of stations across priorities. Note that the
nominal total arrival rate of all three mixes is equal to 1.

Reward Definition. Rewards in the model correspond to the service func-
tions sk in the WLAN scenario. These service functions measure the throughput
achievable by a station in the kth category. As discussed in Subsection 2.4, the
service functions depend on the contention window and the AIFS for each pri-
ority level k as well as on the number of stations using each priority.

We derived the service function in category k, sk, as a function of the number
of stations N , as follows: Using the ns-2 network simulator [14], we simulated one
station sending at category k, and N −1 stations transmitting at the highest pri-
ority (Voice), for N = 1, . . . , 10. This provides a lower bound for the throughput
achievable by the station sending at category k. Figure 2 presents the throughput
for the station sending at category k. Note that each of the throughput curves
(one for each category k) in Figure 2 can be approximated by an exponential
function of the number of stations, N . We thus define the service function for
one station at priority k as

sk(MN) := αe−βN , (1)

where we fit the parameters α and β using curve fitting in Gnuplot [15]. Curve
parameters are shown in Figure 2. The overall reward is then defined as the sum
of the service obtained by all stations:

S :=
K∑

i=0

⎡⎣ K∑
j=i+1

E[#shiftedji]si(MN) + E[#normali]si(MN)

⎤⎦ ,

where #shiftedji and #normali denote the number of tokens on the respec-
tive places in the model. Note that the service function is strictly monotonous
in MN .

192 P. Reinecke, K. Wolter, and J. Zapotoczky

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 2 3 4 5 6 7 8 9 10

T
hr

ou
gh

pu
t (

in
 M

b/
s)

Number of stations (N)

Voice (Priority 0)
Video (Priority 1)

Best Effort (Priority 2)
Background (Priority 3)

Voice Approximation (α=56.720, β=0.502)
Video Approximation (α=78.604, β=0.949)

Best Effort Approximation (α=133.858, β=1.741)
Background Approximation (α=1294.51, β=4.108)

Fig. 2. Simulation throughput and approximating service functions

4.1 Results

Figure 3 shows accumulated throughput for the three priority mixes, with and
without shifting. We observe that shifting increases the throughput for all pri-
ority mixes. The largest increase occurs with P3, in which there are only a few
stations in the voice category. The increase is considerably smaller with P2,
where stations are distributed evenly over the priority categories, and rather
small with P1, which contains mostly high-priority stations. The small benefit
from shifting with P1 is expected, since in P1 most stations are already at the
highest priority. In contrast, P3 has most stations at the lowest priority. These
stations may then be shifted up to priority 0, whereby their throughput increases
significantly. Because of space limitations we omit detailed results for individual
priorities here.

We also note that the accumulated throughput decreases with a growing num-
ber of stations. This is to be expected, since with an increase in the number of
stations collisions become more likely, and thus throughput drops, as can be ob-
served in the service functions (Figure 2). Furthermore, the benefit from shifting
shrinks as well. This is due to the decreasing number of opportunities for shifting.
That is, the more stations there are in the system, the less likely it becomes that
higher priorities are empty and shifting can take place. In fact, for N → ∞, we
expect the curves for shifting to converge to those without shifting. As a rule of
thumb, we conclude from our model that in a network with more than 5 stations

Performance Analysis of Dynamic Priority Shifting 193

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 2 3 4 5 6 7

A
cc

um
ul

at
ed

 th
ro

ug
hp

ut
 (

in
 M

b/
s)

Number of stations (N)

P1, no shifting
P2, no shifting
P3, no shifting

P1, shifting
P2, shifting
P3, shifting

Fig. 3. Accumulated throughput without and with shifting

mainly using high priorities (such as configuration P1) shifting is not beneficial,
even if stations would have the opportunity to do so. For an evenly distributed
priority mix (such as P2) we can deduce that the limit where shifting does no
longer pay off is at roughly 8 stations, and from the shape of the curves in Fig-
ure 3 we assume that in a network with predominantly low priorities shifting is
useful for up to 10 stations at least.

5 Conclusion and Further Work

In this work we formalised priority shifting and presented criteria for its applica-
bility. We illustrated the criteria on the IEEE 802.11e priority scheme. We then
presented a stochastic Petri net model for the evaluation of a shifting opera-
tor. The model was parametrised for an analysis of the IEEE 802.11e priority
scheme. Analysis results show that shifting is beneficial in this scenario, although
the magnitude of the benefit depends on the priority mix present, and on the
number of stations in the system. Both observations are not surprising as such,
but our analysis provides concrete results. We can determine the number of sta-
tions up to which priority shifting is beneficial for a given priority mix. In a
network with 10 or more stations shifting should only be applied if the network
is used primarily by low priority stations, such as demonstrated in configuration
P3. With less than 5 stations shifting is beneficial even if high-priority stations

194 P. Reinecke, K. Wolter, and J. Zapotoczky

are quite dominant, such as in our configuration P1. When stations equally likely
use any of the priorities a network with up to 7 stations, as we solved for in this
analysis, still benefits from priority shifting.

In the future, we want to analyse models with a larger number of stations.
In order to be able to do so we will either need a more powerful machine or an
algorithm especially tailored for large Markov chains. As an interesting applica-
tion domain we want to investigate whether the gold, silver, bronze categories
for resource allocation with dynamic priority shifting can be applied to resource
allocation in computational grids.

One important aspect of further work in the development of shifting algo-
rithms is the monotonicity of the service functions: For simplicity, we assumed
that service functions grow monotonously for stochastically larger task alloca-
tions MN . However, in many scenarios this may not be the case, i.e. there may
be stochastically larger task allocations that result in lower service. Appropriate
shifting algorithms for these scenarios must avoid such allocations.

Acknowledgement. This work has been supported by the German Science
Foundation (DFG) under grant Wo 898/1-2 and Wo 898/2-1.

References

1. Kopetz, H.: Real-Time Systems Design Principles for Distributed Embedded Ap-
plications. Springer, Heidelberg (1997)

2. Bhatia, R., Segall, A., Zussman, G.: Analysis of Bandwidth Allocation Algo-
rithms for Wireless Personal Area Networks. ACM/Springer Wireless Networks
(WINET) 12(5), 589–603 (2006)

3. Terré, M., Vivier, E., Fino, B.: Optimisation of Downlink Resource Allocation
Algorithms for UMTS Networks. EURASIP Journal on Wireless Communication
and Networking 5(4), 573–578 (2005)

4. IEEE 802.11 Working Group: Part 11: Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) specifications. Amendment 8: Medium Access
Control (MAC) Quality of Service Enhancements (802.11e) (last seen June 6, 2008),
http://www.ieee802.org/11/

5. Wolski, R., Brevik, J., Plank, J., Bryan, T.: Grid resource allocation and control
using computational economies. In: Berman, F., Fox, G., Hey, T. (eds.) Grid Com-
puting: Making the Global Infrastructure a Reality, pp. 747–772. Wiley and Sons,
Chichester (2003)

6. Wolski, R., Obertelli, G., Allen, M., Nurmi, D., Brevik, J.: Predicting Grid Re-
source Performance On-line. In: Handbook of Innovative Computing: Models, En-
abling Technologies, and Applications. Springer, Heidelberg (2005)

7. Zapotoczky, J., Wolter, K.: Increasing Performance of the 802.11e Protocol through
Access Category Shifting. In: Proc. International Conference on Quantitative Eval-
uation of Systems (MMB 2008), Dortmund, Germany, pp. 195–204 (2008)

8. Zhao, Y., Tavares, C.: Network adaptive priority management in wireless local area
networks, USPTO Application No. 20070258419, Palo Alto, CA, US (2007)

9. Szekli, R.: Stochastic Ordering and Dependence in Applied Probability. Springer,
Heidelberg (1995)

http://www.ieee802.org/11/

Performance Analysis of Dynamic Priority Shifting 195

10. IEEE 802.11 Working Group: Part 11: Wireless LAN Medium Access Con-
trol (MAC) and Physical Layer (PHY) specifications (last seen June 6, 2008),
http://www.ieee802.org/11/

11. Iera, A., Ruggeri, G., Tripodi, D.: Providing Throughput Guarantees in 802.11e
WLAN Through a Dynamic Priority Assignment Mechanism. Wireless Personal
Communications 34, 109–125 (2005)

12. Ge, Y., Hou, J.C., Choi, S.: An analytic study of tuning systems parameters in
IEEE 802.11e enhanced distributed channel access. Comput. Netw. 51(8), 1955–
1980 (2007)

13. Zimmermann, A., German, R., Freiheit, J., Hommel, G.: Petri Net Modelling and
Performability Evaluation with TimeNET 3.0. In: Haverkort, B.R., Bohnenkamp,
H.C., Smith, C.U. (eds.) TOOLS 2000. LNCS, vol. 1786, pp. 188–202. Springer,
Heidelberg (2000)

14. Various authors: The Network Simulator ns-2 (last seen June 6, 2008),
http://www.isi.edu/nsnam/ns/

15. Janert, P.: Gnuplot in Action: Understanding Data with Graphs. Manning Publi-
cations (2008) ISBN 978-1933988399

http://www.ieee802.org/11/
http://www.isi.edu/nsnam/ns/

196 P. Reinecke, K. Wolter, and J. Zapotoczky

Appendix: Complete Petri Net Model for Priority Shifting

Performance Analysis of a Priority Queue with

Place Reservation and General Transmission
Times

Bart Feyaerts and Sabine Wittevrongel

SMACS Research Group, TELIN Department, Ghent University
Sint-Pietersnieuwstraat 41, 9000 Gent, Belgium

{bfeyaert,sw}@telin.ugent.be

Abstract. In this paper, we analyze a discrete-time single-server queue
with two classes of packet arrivals and a reservation-based scheduling
discipline. The objective of this discipline is to give a certain priority to
(delay-sensitive) packets of class 1 and at the same time to avoid packet
starvation for the (delay-tolerant) packets of class 2. This is achieved by
the introduction of a reserved place in the queue that can be taken by
a future arrival of class 1. Both classes contain packets with generally
distributed transmission times.

By means of a probability generating functions approach, both the
class-1 and the class-2 packet delay are studied. By some numerical ex-
amples, the delay performance of the Reservation discipline is compared
to that of the classical Absolute Priority (AP) and First-In First-Out
(FIFO) scheduling disciplines.

Keywords: Discrete-time queueing model, priority scheduling, place
reservation, delay analysis.

1 Introduction

Modern packet-based communication networks have to support an increasingly
diverse range of applications with different Quality of Service (QoS) require-
ments. Real-time applications (e.g. voice, video or audio streaming, gaming,
. . .) have strict delay-related requirements. For such applications, it is impor-
tant that the mean delay and the delay jitter experienced by the data packets are
minimal. Non-real-time applications (e.g. file transfer, email, . . .) on the other
hand, require low packet loss but can tolerate much larger delays. A method
to guarantee acceptable delays to real-time applications is the use of priority
scheduling in the network nodes, as opposed to the simple First-In First-Out
(FIFO) scheduling where all packets are treated the same. Suppose we have a
queue with two types of packet arrivals. We refer to packets from delay-sensitive
and delay-tolerant applications as class-1 and class-2 packets respectively.

The most drastic way of priority scheduling is then Absolute Priority (AP),
where transmission priority is always given to class-1 packets. This means that
when the server becomes free, any available class-1 packet will always be sched-
uled next. Class-2 packets can thus only be transmitted when no class-1 packets

N. Thomas and C. Juiz (Eds.): EPEW 2008, LNCS 5261, pp. 197–211, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

198 B. Feyaerts and S. Wittevrongel

are present. This AP scheduling discipline has been analyzed extensively in the
literature; for discrete-time studies (i.e. with slotted time), see e.g. [1,2,3,4] for
the case of uncorrelated packet arrivals from slot to slot and [5,6,7] for the case of
a correlated packet arrival process. It has been shown that AP indeed decreases
the delay for class-1 packets. However, this comes at the cost of increasing the
delay for the class-2 packets. Especially when the network load is high, this may
lead to excessive delays for class-2 packets or so-called packet starvation.

In order to avoid such excessive class-2 delays, while still giving a certain
priority to class-1 packets, a new reservation-based priority scheduling discipline
has been proposed in [8]. This Reservation discipline introduces a reserved place
(R) in the queue that can be taken by a future arrival of class 1. The specific
operation of the queue under the Reservation discipline is as follows. There is
always exactly one reserved place R in the queue. Of all the arriving packets
during a certain slot, the class-1 packets are always inserted into the queue
before the class-2 packets. When a class-1 packet is inserted, it takes the position
of the reserved place R and makes a new reserved place R at the end of the
queue. Afterwards, class-2 packets are inserted at the end of the queue in the
classical FIFO way. Once packets are stored in the queue, all packets are treated
independently from their class. As long as it is not taken by a class-1 packet, the
reserved place R behaves like any other packet in the sense that it advances one
place closer to the server whenever a packet leaves the server. The reserved place
R can however not enter the server nor leave the system. So, whenever there are
no packets in the queue, R is placed at the position closest to the server. Clearly,
under the Reservation discipline, a class-1 packet may jump over some class-2
packets when it is stored in the queue; this reduces the class-1 delay.

In the literature, there is some previous work with respect to the analysis of
the Reservation discipline. In [8], the mean delay of class-1 and class-2 packets
is roughly estimated by means of a simple continuous-time model with Poisson
arrivals. The distribution of the packet delay for both classes in a discrete-time
queue with the Reservation discipline and general time-independent arrivals has
been studied, both in the case of deterministic packet transmission times equal
to exactly one slot [9,10] as in the case of geometrically distributed transmission
times [11]. In the current paper, we further extend this work by allowing a general
distribution for the transmission times of the packets. Our analysis is based on
probability generating functions (pgf’s) and leads to closed-form expressions for
the distribution, the mean and the variance of the delay of both classes.

The rest of the paper is structured as follows. The mathematical model we
use to study the Reservation discipline in case of general packet transmission
times is described in Section 2. In Section 3, we identify an adequate Markovian
description for the state of the system at an arbitrary slot and we establish a
number of system equations that govern the evolution in time of the system state
vector. The joint pgf of the system state in equilibrium is derived in Section 4. In
Section 5, we then analyze the steady-state delay of both classes of packets. In
Section 6, we present some numerical examples and we compare the performance
of the Reservation discipline to that of the classical FIFO and AP disciplines.

Performance Analysis of a Priority Queue 199

2 Model Description

In this paper, we study a discrete-time single-server queueing system with infinite
buffer capacity. The time axis is assumed to be divided into fixed-length intervals,
referred to as slots and chronologically labeled.

There are two types of packets arriving to the system, namely high-priority
(class-1) packets and low-priority (class-2) packets. In our model, we assume that
the numbers of class-j packet arrivals during the consecutive slots are iid (inde-
pendent and identically distributed) random variables. Let the random variable
aj,k denote the number of packet arrivals of class j (j = 1, 2) during slot k. The
joint pgf of a1,k and a2,k will be indicated as

A(z1, z2) � E
[
z

a1,k

1 z
a2,k

2

]
=

∞∑
η1=0

∞∑
η2=0

Prob[a1,k = η1, a2,k = η2] zη1
1 zη2

2 , (1)

where E[.] denotes the expected value of the quantity between brackets. Note
that the numbers of arrivals of both classes during the same slot may be corre-
lated. For further use, we also define the marginal pgf’s of the number of class-j
packet arrivals during a slot:

A1(z) � E[za1,k] = A(z, 1) ; (2)

A2(z) � E[za2,k] = A(1, z) . (3)

The total number of packet arrivals during slot k is denoted by aT,k � a1,k +a2,k

and has pgf AT (z) � E[za1,k+a2,k] = A(z, z). We denote the arrival rate of class-j
packets (j = 1, 2) by λj = A′

j(1) and the total arrival rate by λT � λ1 + λ2.
The service (or transmission) times of the packets belonging to both classes

are assumed to be iid random variables and generally distributed. Their common
pgf is denoted by S(z) and the mean service time is denoted by µ = S′(1). The
service times and the random variables related to the packet arrival process are
assumed to be mutually independent.

Also, we assume a stable system. That is, the mean number of packet arrivals
per slot is assumed to be strictly less than the mean number of packets that can
be transmitted per slot:

λT <
1
µ

. (4)

Under the Reservation discipline, all the arriving packets during a certain slot
are ordered before inserting them into the queue: the class-1 packets are always
inserted before the class-2 packets. When a class-1 packet is stored in the queue,
it takes the position of the reserved place R and makes a new reserved place
R at the end of the queue, so that there is always exactly one reserved place.
Afterwards, class-2 packets are inserted at the end of the queue in the classical
FIFO way. Once inserted, all packets are treated independently from their class.

200 B. Feyaerts and S. Wittevrongel

Note that due to the operation of the Reservation discipline, no class-1 packet
will ever be behind the reserved place R (otherwise, that R would have been
seized). Also note that no class-2 packet is ever inserted in front of R (the reserved
place can only appear behind class-2 packets by inserting class-1 packets).

As long as it is not seized by a class-1 packet, the reserved place R behaves
like any other packet, in the sense that it advances one place whenever a packet
leaves the server. The reserved place R can however not enter the server, nor
leave the system.

3 Markovian State Description and System Equations

Let us define the random variable uk as the total system content (i.e., the total
number of packets present in the system including all class-1 and class-2 packets,
but excluding the reserved place R) at the beginning of slot k.

Because of the general packet transmission times, in order to obtain a Markov-
ian description of the system state at the beginning of slot k, we also need in-
formation about the progress of the service process for the packet in service, if
any, at the beginning of slot k. We therefore introduce the random variable hk

as the number of slots to service completion of the packet in the server at the
beginning of slot k, if uk ≥ 1, and hk = 0 if uk = 0. Note that hk takes integer
values that can only be 0 if the system is empty.

In addition, for the delay analysis we moreover need to keep track of the
position of R at slot boundaries. Thus, we define the random variable mk as the
position of R at the beginning of slot k. The position of a packet P in the queue
is defined as a non-negative integer, equal to the number of queue positions to
the server, including the position of P itself, with position 0 corresponding to
the server. Since R can never enter the server, we find for mk:

1 ≤ mk ≤ uk if uk > 0 , mk = 1 if uk = 0 . (5)

The vector (hk, mk, uk) allows us to adequately monitor the entire system
state and to derive the distributions of the delays of packets of any of the two
classes. In the sequel, we will refer to it as the system state vector.

In order to express the evolution in time of the system state vector, we need
to distinguish three separate cases. First, if the system is empty at the beginning
of slot k, the system content at the beginning of slot k + 1 equals the number
of packet arrivals during slot k. In this case, the remaining time until service
completion of the packet in service at the beginning of slot k + 1 equals the full
service time of the packet, unless there were no packet arrivals during slot k, in
which case the system stays empty. Secondly, if the system is nonempty at the
beginning of slot k and hk = 1, there is a packet departure at the end of slot k
and the system either becomes empty or the service of a new packet starts at
the beginning of slot k + 1. Finally, in case hk > 1, there is no packet departure
and the remaining time until service completion is simply decreased by one slot.

Performance Analysis of a Priority Queue 201

With respect to the evolution of the position of the reserved place R, we note
that when there are no class-1 arrivals during slot k, R advances one position
closer to the server, except when it was already at position 1 or when there is
no packet departure, in which case the position of R remains unchanged. On the
other hand, if there is at least one class-1 arrival during slot k, R is seized and
a new reservation is created at the end of the queue.

All these observations lead to the following set of system equations:

1. if hk = 0 (hence, uk = 0 and mk = 1):

uk+1 = aT,k ,

mk+1 =

{
1 , a1,k = 0 ,

a1,k , a1,k > 0 ,

hk+1 =

{
0 , aT,k = 0 ,

s∗ , aT,k > 0 ;
(6)

2. if hk = 1 (hence, uk > 0 and 1 ≤ mk ≤ uk):

uk+1 = uk − 1 + aT,k ,

mk+1 =

{
(mk − 2)+ + 1 , a1,k = 0 ,

uk − 1 + a1,k , a1,k > 0 ,

hk+1 =

{
0 , uk = 1 and aT,k = 0 ,

s∗ , uk > 1 or aT,k > 0 ;
(7)

3. if hk > 1 (hence, uk > 0 and 1 ≤ mk ≤ uk):

uk+1 = uk + aT,k ,

mk+1 =

{
mk , a1,k = 0 ,

uk + a1,k , a1,k > 0 ,

hk+1 = hk − 1 . (8)

Here (.)+ is the operator max(., 0) and s∗ denotes the service time of the next
packet to enter the server at the beginning of slot k, if any.

4 Equilibrium Distribution of the System State

The main goal of this section is to derive the steady-state distribution of the
system state vector. This distribution will then be used in the next section to
analyze the packet delays of both classes.

We define the joint pgf of the system state vector (hk, mk, uk) at the beginning
of slot k as

Pk(x, y, z) � E
[
xhkymk−1zuk

]
. (9)

202 B. Feyaerts and S. Wittevrongel

The next step is then to relate the system state pgf’s at two successive slots k
and k + 1 by means of the above system equations. As a result, we obtain:

Pk+1(x, y, z) =
xS(x) − 1

xy

(
(y − 1)A(0, z) + A(yz, z)

)
p0,k

+
(
1 − S(x)

)
AT (0)

(
p0,k + Rk(0, 0)

)
+

y − 1
y

S(x)A(0, z)Rk(0, z)

+
S(x) − yz

y

[(
A(yz, z) − A(0, z)

)
Rk(1, yz) + A(0, z)Rk(y, z)

]
+

1
x

A(0, z)Pk(x, y, z) +
1
xy

(
A(yz, z) − A(0, z)

)
Pk(x, 1, yz) ,(10)

where p0,k denotes the probability of an empty system at the beginning of slot
k and where the function Rk(y, z) is defined as

Rk(y, z) � E
[
ymk−1zuk−1{hk = 1}

]
=

∞∑
i=1

∞∑
j=1

Prob[hk = 1, mk = i, uk = j] yi−1zj−1 , (11)

with the notation E[X{Y }] � Prob[Y] E[X |Y].
Note that since uk = 0 implies that hk = 0 and mk = 1, the following

equivalent expressions for p0,k hold:

p0,k � Prob[uk = 0] = Prob[hk = 0, mk = 1, uk = 0]
= Pk(0, 0, 0) = Pk(x, y, 0), ∀x, y . (12)

Similarly, since uk = 1 implies that mk = 1,

Rk(0, 0) = Prob[hk = 1, mk = 1, uk = 1] = Rk(y, 0), ∀y . (13)

These results will be useful further in our analysis.
We now assume that for k → ∞, the system reaches a steady state, such

that the functions Pk(x, y, z) and Pk+1(x, y, z) both converge to the same lim-
iting function, indicated as P (x, y, z). Similarly, we define (h, m, u) and aj as
the system variables and the number of class-j arrivals for an arbitrary slot dur-
ing equilibrium. Remember that the condition for the system to reach such an
equilibrium is given by λT < 1

µ .
We can then derive the limiting function P (x, y, z) by taking the limit k → ∞

in (10) and solving for P (x, y, z). This yields:

P (x, y, z) =
1

y
(
x − A(0, z)

)[
xy

(
1 − S(x)

)
AT (0)

(
p0 + R(0, 0)

)
+

(
xS(x) − 1

)(
(y − 1)A(0, z) + A(yz, z)

)
p0

+x
(
S(x) − yz

)((
A(yz, z) − A(0, z)

)
R(1, yz) + A(0, z)R(y, z)

)
+x(y − 1)S(x)A(0, z)R(0, z) +

(
A(yz, z) − A(0, z)

)
P (x, 1, yz)

]
.

(14)

Performance Analysis of a Priority Queue 203

What remains in order to determine P (x, y, z) completely is to obtain the
unknown functions P (x, 1, yz), R(y, z) � limk→∞ Rk(y, z), R(0, z), R(1, yz) and
the unknown probabilities R(0, 0) and p0 � limk→∞ p0,k. These will be deter-
mined one by one in the remainder of this section.

First, we note from (12) that p0 = P (x, y, 0) for all x and y. From (14), it
then follows that

p0 =
AT (0)

x − AT (0)
(
(x − 1)p0 + xR(0, 0)

)
, ∀x , (15)

and hence (
1 − AT (0)

)
p0 = AT (0)R(0, 0) . (16)

Another remarkable property comes forth when we derive an expression for
P (x, 1, z) from (14):

P (x, 1, z) =
1

x − AT (z)

(
x
(
1 − S(x)

)
AT (0)

(
p0 + R(0, 0)

)
+

(
xS(x) − 1

)
AT (z)p0 + x

(
S(x) − z

)
AT (z)R(1, z)

)
. (17)

This equation exactly matches the one for the joint pgf of the remaining service
time and system content of a simple GI-G-1 queue, as found in [12]. This could
be expected, as the substitution of y = 1 in P (x, y, z) results in the joint pgf
of (h, u), not taking the Reservation discipline into account, which are exactly
the same system variables as used in the analysis of the non-priority queue in
[12]. Thus we can also derive an expression for p0 and R(1, z), based upon the
corresponding expressions from previous research:

p0 = 1 − A′
T (1)S′(1) = 1 − λT µ , (18)

R(1, z) =
p0

(
AT (z) − 1

)
S

(
AT (z)

)
AT (z)

(
z − S

(
AT (z)

)) . (19)

Since P (x, y, z) is a pgf, it must be bounded for all values of x, y and z such
that |x| ≤ 1, |y| ≤ 1 and |z| ≤ 1. In particular, this should be true for x = A(0, z),
|y| ≤ 1 and |z| ≤ 1, since |A(0, z)| ≤ 1 for all such z, because A(z1, z2) is a pgf.
If we choose x = A(0, z) in (14), where |y| ≤ 1 and |z| ≤ 1, the denominator
x − A(0, z) vanishes. The numerator in (14) therefore also has to vanish for the
arguments. This leads to an additional relation, which allows us to determine
R(y, z) as

R(y, z) =
S

(
A(0, z)

)
yz − S

(
A(0, z)

) A(0, z) − 1
A(0, z)

[
y +

A(yz, z) − A(0, z)
A(0, z) − AT (yz)

]
p0

+
(y − 1)S

(
A(0, z)

)
yz − S

(
A(0, z)

) R(0, z) − A(yz, z) − A(0, z)
A(0, z) − AT (yz)

R(1, yz) . (20)

204 B. Feyaerts and S. Wittevrongel

The function R(y, z) is a partial pgf. Just like a normal pgf, partial pgf’s must
be bounded for arguments on the unit disc, which implies that there must not
be any singularities in the open unit disc. As in [11], it can be shown that there
always exists a non-empty subset ℵ of the open unit disc such that

z ∈ ℵ ⇒
∣∣∣∣∣S

(
A(0, z)

)
z

∣∣∣∣∣ < 1 . (21)

If we then were to choose for z∗ a value in ℵ and y∗ =
S
(
A(0,z∗)

)
z∗ , then the

denominator yz − S
(
A(0, z)

)
vanishes for y = y∗ and z = z∗, seemingly causing

a singularity, which is impossible. The only remaining option is then dor the
numerator in (20) to disappear for (y∗, z∗) as well. This provides us with a
means to determine R(0, z):

R(0, z) =
1 − A(0, z)

A(0, z)
(
z − S

(
A(0, z)

))[
−S

(
A(0, z)

)
+ zφ(z)

]
p0 , (22)

where we have defined φ(z) as

φ(z) �
A(0, z) − A

(
S

(
A(0, z)

)
, z

)
A(0, z) − AT

(
S

(
A(0, z)

)) . (23)

Joining the bits and pieces, we finally obtain the following closed-form expres-
sion for the joint pgf of the system state:

P (x, y, z) = p0

�
1 − xz

1 − A(0, z)

x − A(0, z)

S(x) − S
�
A(0, z)

�
z − S

�
A(0, z)

� �

+
p0

yz − S
�
A(0, z)

�
�

xz
�
yz − S(x)

�
A(0, z) − AT (yz)

A(yz, z) − A(0, z)

yz − S
�
AT (yz)

�
�

S
�
A(0, z)

� 1 − A(0, z)

x − A(0, z)
− S

�
AT (yz)

� 1 − AT (yz)

x − AT (yz)

�

+ xz2(y − 1)
1 − A(0, z)

x − A(0, z)

S(x) − S
�
A(0, z)

�
z − S

�
A(0, z)

� A(0, z) − A
�
S
�
A(0, z)

�
, z
�

A(0, z) − AT

�
S
�
A(0, z)

��

+
xz(1 − x)

x − A(0, z)

A(yz, z) − A(0, z)

x − AT (yz)

�
S
�
A(0, z)

�S(x) − S
�
AT (yz)

�
yz − S

�
AT (yz)

� − S(x)

�	
.

(24)

5 Distribution of the Packet Delay

With the above results in hand, we are now able to analyze the packet delay for
both packet classes. Therefore, we choose an arbitrary packet P from all class-j

Performance Analysis of a Priority Queue 205

packets arriving to the queue and we define I as the arrival slot of P . The delay
dj of P is then given by the total number of slots from the end of slot I until P
leaves the system. Thus, slot I itself does not contribute to the delay of P . In
general, the delay experienced by P consists of the time until service completion
of the packet in service, if any, and the full service times of all packets served
until P leaves the system. This results in

dj = (hI − 1)+ +
nj+1∑
i=1

si , (25)

where hI is the system state variable h at the beginning of slot I, nj is the
number of packets to be served before P (excluding the packet in service during
slot I, if any) and the si’s are the service times of those nj packets. Note that
we also have to take the service time of P itself into account.

The total number of packets to be served before P , excluding the packet in
service, denoted as nj , not only depends on the system content at the start of
slot I, but also on how many packets arrive during I that are inserted before P .
Therefore we introduce the random variable �j such that P is the �j-th class-j
packet that is inserted during slot I. The pgf Lj(z) of �j can be shown to be
given by (see e.g. [12])

Lj(z) =
z
(
1 − Aj(z)

)
λj(1 − z)

, j = 1, 2 . (26)

The derivation of expression (26) makes use of knowledge on the arrival
process during slot I. Let aI

1 and aI
2 be the respective number of class-1 and

class-2 arrivals during slot I. Note that slot I is not a randomly chosen slot,
but the arrival slot of the randomly chosen class-j packet P so that aI

j > 0.
Therefore the vector (aI

1, a
I
2) does not have the same distribution as the vector

(a1, a2). The relation between the two distributions is given by the equation

Prob
[
aI
1 = α1, a

I
2 = α2

]
=

αj

λj
Prob[a1 = α1, a2 = α2] , j = 1, 2 . (27)

As the foregoing observations indicate, we also rely on the system state vector
at the beginning of slot I, denoted by (hI , mI , uI), with joint pgf PI(x, y, z).
Due to the iid nature of the arrival process, the system state as observed by an
arbitrary packet (just like P), has the same distribution as the system state at
the beginning of an arbitrary slot. Thus, we can state:

(hI , mI , uI) d= (h, m, u) , PI(x, y, z) = P (x, y, z) . (28)

5.1 The PGF of the Class-1 Packet Delay

If P is a class-1 packet, n1 is equal to the number of packets in the queue, that
are positioned between the reserved place and the server. If P is the first class-1

206 B. Feyaerts and S. Wittevrongel

packet to be inserted during I, R still is at position mI . If P is not the first class-
1 packet, R will be at the end of the queue, at a position that depends on the
system content uI at the beginning of slot I and the number of preceding class-1
packet arrivals during I. Based on these considerations, n1 can be expressed as
follows: {

n1 = mI − 1 , �1 = 1 ,

n1 = (uI − 1)+ + �1 − 1 , �1 > 1 .
(29)

The probability Prob[�1 = 1] can be obtained from the pgf L1(z) given by
(26). Specifically, we have that

Prob[�1 = 1] =
L1(z)

z

∣∣∣
z=0

=
1 − α

λ1
, (30)

where we have made use of de l’Hôpital’s rule and where we have introduced the
notation α � A1(0) for convenience.

From (25) and (29), we can now determine D1(z), the pgf of d1:

D1(z) � E
[
zd1

]
= p0L1

(
S(z)

)
+

S(z)
z

Prob[�1 = 1]
(
P

(
z, S(z), 1

)
− p0

)
+

1
zS(z)

(
L1

(
S(z)

)
− S(z)Prob[�1 = 1]

)(
P

(
z, 1, S(z)

)
− p0

)
=

p0

λ1
S(z)

{
1 − A1

(
S(z)

)
1 − S(z)

+ (z − 1)
1 − α

z − α

A1

(
S(z)

)
− α

z − AT

(
S(z)

)
+

AT

(
S(z)

)
− 1

z − AT

(
S(z)

) S(z) − A1

(
S(z)

)
+

(
1 − S(z)

)
α

1 − S(z)

+
(1 − α)2

(z − α)
(
1 − S(α)

) [
S(α) − S(z) +

(
S(z) − 1

)
φ(1)

]}
. (31)

5.2 The PGF of the Class-2 Packet Delay

If P is a class-2 packet, it will be inserted at the end of the queue, at a position
somewhere behind the reserved place. Let n∗

2 be the number of packets waiting
in the queue - excluding the packet in service, if any - at the insertion of P . Since
all class-1 packets arriving in slot I are inserted first, we find that

n∗
2 = (uI − 1)+ + aI

1 + �2 − 1 . (32)

These are the packets waiting in the queue at the end of slot I and to be served
before P . This number is equal to n2 only if R is not seized by a class-1 packet
(i.e., if there is no class-1 packet arrival) during the waiting time of P . The
waiting time of P is the number of slots from the end of P ’s arrival slot I, up
to the end of the last slot P is waiting in the queue.

In case R is not seized before P reaches the server, the waiting time of P ,
denoted by v, consists of the remaining number of slots to service completion of

Performance Analysis of a Priority Queue 207

the packet in service, if any, and the sum of the service times of the n∗
2 packets

stored in front of P :

v = (hI − 1)+ +
n∗

2∑
i=1

si . (33)

Note that in general aI
1 and �2 are not independent when aI

2 is unknown. The
joint pgf of aI

1 and �2 can easily be found from (27) as

F (x, y) � E
[
xaI

1y�2
]

=
y

1 − y

A1(x) − A(x, y)
λ2

, (34)

so that the pgf of aI
1 + �2 is F (z, z). From (32)–(34), we can then derive the pgf

V (z) of v as

V (z) � E[zv] =
F

(
S(z), S(z)

)
S(z)

(
p0 +

P
(
z, 1, S(z)

)
− p0

zS(z)

)
=

p0

λ2

1 − z

1 − S(z)
AT

(
S(z)

)
− A1

(
S(z)

)
z − AT

(
S(z)

) . (35)

In case R is seized before P reaches the server, the waiting time of P is
increased with the service time of the class-1 packet seizing the reserved place.
Let γn be a Bernoulli random variable with pgf Γn(z) = αn + (1 − αn) z, i.e.,
γn equals 1 if at least one class-1 packet arrives in n consecutive slots and γn

equals 0 otherwise. Then the delay of P is expressed as

d2 = v + γvs̃ + sP , (36)

where s̃ is the service time of the class-1 packet seizing R, if any, and sP is the
service time of P . From this relation, the pgf D2(z) finally follows as

D2(z) � E
[
zd2

]
=

p0

λ2
S(z)

{
S(z)

1 − z

1 − S(z)
AT

(
S(z)

)
− A1

(
S(z)

)
z − AT

(
S(z)

)
+

(
1 − S(z)

) 1 − zα

1 − S(zα)
AT

(
S(zα)

)
− A1

(
S(zα)

)
zα − AT

(
S(zα)

) }
. (37)

Note that the expressions (31) and (37) are completely in accordance with
the results of [10] and [11], where similar queueing systems have been analyzed,
but with service times of one slot and geometrically distributed service times
instead of general service times.

5.3 Moments of the Packet Delay

Using the moment generating property of pgf’s, we can now determine the mo-
ments of the class-j packet delay from the pgf Dj(z) (e.g. E[dj] = D′

j(1)). More
specificaly we find

D′
1(1) = µ

(
2 +

µλ′
T

2p0
+

λ′
1

2λ1
− p0

λ1

1 − α

1 − S(α)
(
1 − φ(1)

))
+

µ′λT

2p0
− 1 − p0

λ1
(38)

208 B. Feyaerts and S. Wittevrongel

and

D′
2(1) = µ

(
2 +

λ′
T − λ′

1

2λ2
− V (α)

)
+

1
2p0

(
µ2λ′

T + µ′λT

)
, (39)

to respectively be the mean packet delay for packets of class 1 and class 2. Please
note that we have defined µ′ � S′′(1), λ′

1 � A′′
1 (1) and likewise λ′

T � A′′
T (1).

Similarly, the mean system content can be calculated from U(z) � E[zu] =
P (1, 1, z) as found in (24). This way it can be verified that Little’s law, which
here takes the form λ1E[d1] + λ2E[d2] = E[u] is satisfied by (38) and (39).

Dj(z) can also be used to calculate higher-order moments, again by means
of the moment generating property. Thus, one can calculate the class-j packet
delay variance using

var[dj] = D′′
j (1) + D′

j(1) − D′
j(1)2 . (40)

6 Numerical Results and Discussion

In this section, we will investigate the delay performance of the Reservation dis-
cipline by means of a practical example, and compare the Reservation discipline
with the First-In First-Out (FIFO) and Absolute Priority (AP) scheduling dis-
ciplines. Therefore we consider a practical situation of a non-blocking output
buffering switch with N inlets and N outlets and each output buffer has one
outlet. When a packet arrives on one of the switch’s inlets, it is first routed and
then stored into the output buffer corresponding to the packet’s destination.
This routing is done in an independent and uniform way. On each of the inlets
of the switch, we assume iid Bernoulli arrivals, such that the joint pgf of the
number of per-slot class-1 and class-2 arrivals in an output buffer is given by

A(z1, z2) =
(

1 − λ1

N
(1 − z1) − λ2

N
(1 − z2)

)N

, (41)

where λj is the probability of a class-j arrival at an arbitrary switch inlet. We
then define λT � λ1 + λ2 as the total arrival rate at an arbitrary switch inlet.
Due to the Bernoulli nature of the arrivals on the switch inlets, at most N packet
arrivals can occur per slot. This implies that the numbers of class-1 and class-2
packet arrivals are correlated. At any inlet at which there is a class-1 arrival,
there cannot be a class-2 arrival. In this paper we consider N = 16.

In the example, both classes contain packets with Poisson distributed service
times, such that S(z) is given by

S(z) = ze(µ−1)(z−1). (42)

In the remainder of this section, we will investigate the effects on the delay
performance of three main parameters (the system load ρ � λT µ, the traffic mix
λ1
λT

and the mean service speed 1
µ). The delay performance measures we consider

are both the mean delay and the delay variance for both classes of packets. Note
that the results for FIFO and AP are respectively drawn from [2] and [13].

Performance Analysis of a Priority Queue 209

R
AP
FIFO

class 1

class 2

E[d]

0 0.2 0.4 0.6 0.8 1

5

10

15

20

λT µ

R
AP
FIFO

class 1

class 2

Var[d]

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

λT µ

Fig. 1. Mean delay and delay variance for both packet classes as a function of ρ, for
Reservation discipline (full), AP (dotted) and FIFO (dashed)

First of all, we study the effects of a varying load on the packet delay for both
classes. We consider a traffic mix λ1

λT
equal to 0.75 and a mean service speed 1

µ of
0.9. The curves of the corresponding mean packet delay and the delay variance
are shown in figure 1. Since for ρ → 1 the system becomes unstable, we can
observe a vertical asymptote. We also see that under heavy load, the class-2
delay performance for Absolute Priority becomes very bad, whereas it remains
close to FIFO performance for the Reservation discipline: the class-2 curves for
AP grow to infinite measures much faster than for the Reservation discipline.

Next, we investigate the effects of a varying traffic mix λ1
λT

on the mean delay
and the delay variance. To construct figure 2, we have chosen 1

µ = 0.9 and
λT = 0.8. Due to the specific nature of the arrival process, we can observe that

R
AP
FIFO

class 1

class 2

E[d]

0 0.2 0.4 0.6 0.8 1

5

10

15

20

λ1/λT

R
AP
FIFO

class 1

class 2

Var[d]

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

λ1/λT

Fig. 2. Mean delay and delay variance for both packet classes as a function of λ1
λT

, for

Reservation discipline (full), AP (dotted) and FIFO (dashed)

210 B. Feyaerts and S. Wittevrongel

R
AP
FIFO

class 1

class 2

E[d]

0 0.2 0.4 0.6 0.8 1
1
2

5
10
20

50
100
200

500
1000

1/µ

R
AP
FIFO

class 1

class 2Var[d]

0 0.2 0.4 0.6 0.8 1
1
2

5
10
20

50
100
200

500
1000
2000

1/µ

Fig. 3. Mean delay and delay variance for both packet classes as a function of 1/µ, for
Reservation discipline (full), AP (dotted) and FIFO (dashed)

the FIFO curve is horizontal. Note that when all traffic is of class j (λ1
λT

= 0 or
1), the corresponding measures coincide with the FIFO curve. This is because
the packets are then exclusively inserted in arrival order, as is the case in FIFO
scheduling. We can also observe that for a low partial load of class 1, the delay
measures for the Reservation discipline do not significantly differ from the AP
delay measures. For an increased class-1 traffic fraction however, the differences
between AP and the Reservation discipline are much more striking. At a high
fraction of class-1 traffic, AP has the side-effect of class-2 packet starvation: class-
2 packets seldomly reach the server, leading to an ever increasing delay. Under
the Reservation discipline, any class-2 packet can only be passed by one class-1
packet, since there is only 1 reserved place, resulting in a delay performance that
stays rather close to FIFO performance.

Finally, we take a look at the effect of different service speeds. In figure 3,
we show the mean delay and the delay variance as a function of the service
speed 1

µ , for λT = 0.8 and λ1
λT

= 0.75. We observe that all curves exhibit the
same behaviour: low service speeds mean long transmission times, leading to
long delay times, which is intuitively clear. Note that the impact of the service
speed on the delay characteristics is very high.

References

1. Takine, T., Sengupta, B., Hasegawa, T.: An analysis of a discrete-time queue for
broadband ISDN with priorities among traffic classes. IEEE Transactions on Com-
munications 42(24), 1837–1845 (1994)

2. Walraevens, J., Steyaert, B., Bruneel, H.: Delay characteristics in discrete-time GI-
G-1 queues with non-preemptive priority queueing discipline. Performance Evalu-
ation 50(1), 53–75 (2002)

3. Mazzini, G., Rovatti, R., Setti, G.: A closed form solution of Bernoullian two-classes
priority queue. IEEE Communications Letters 9(3), 264–266 (2005)

Performance Analysis of a Priority Queue 211

4. Ndreca, S., Scoppola, B.: Discrete time GI/Geom/1 queueing system with priority.
European Journal of Operational Research 189(3), 1403–1408 (2008)

5. Ali, M.M., Song, X.: A performance analysis of a discrete-time priority queueing
system with correlated arrivals. Performance Evaluation 57(3), 307–339 (2004)

6. Jin, X.L., Min, G.: Performance analysis of priority scheduling mechanisms under
heterogeneous network traffic. Journal of Computer and System Sciences 73(8),
1207–1220 (2007)

7. Walraevens, J., Wittevrongel, S., Bruneel, H.: A discrete-time priority queue with
train arrivals. Stochastic Models 23(3), 489–512 (2007)

8. Burakowski, W., Tarasiuk, H.: On new strategy for prioritising the selected flow in
queuing system. In: Proceedings of the COST 257 11th Management Committee
Meeting, Barcelona (January 2000) COST-257 TD(00)03

9. De Vuyst, S., Wittevrongel, S., Bruneel, H.: Delay differentiation by reserving space
in queue. Electronics Letters 41(9), 564–565 (2005)

10. De Vuyst, S., Wittevrongel, S., Bruneel, H.: Place reservation: delay analysis of a
novel scheduling mechanism. Computers & Operations Research 35(8), 2447–2462
(2008)

11. Feyaerts, B., De Vuyst, S., Wittevrongel, S., Bruneel, H.: Analysis of a discrete-time
priority queue with place reservations and geometric service times. In: Proceedings
of the Sixth Conference on Design, Analysis, and Simulation of Distributed Sys-
tems, DASD 2008, Edinburgh (June 2008)

12. Bruneel, H.: Performance of discrete-time queueing systems. Computers & Opera-
tions Research 20(3), 303–320 (1993)

13. Bruneel, H., Kim, B.G.: Discrete-Time Models for Communication Systems Includ-
ing ATM. Kluwer Academic Publishers, Boston (1993)

Analysis of BMAP/G/1 Vacation Model of

Non-M/G/1-Type�

Zsolt Saffer and Miklós Telek

Department of Telecommunications,
Technical University of Budapest,

1521 Budapest Hungary
{safferzs,telek}@hit.bme.hu

Abstract. In this paper we present the analysis of BMAP/G/1 vaca-
tion models of non-M/G/1-type in a general framework. We provide new
service discipline independent formulas for the vector generating func-
tion (GF) of the stationary number of customers and for its mean, both
in terms of quantities at the start of vacation.

We present new results for vacation models with gated and G-limited
disciplines. For both models discipline specific systems of equations
are setup. Their numerical solution are used to compute the required
quantities at the start of vacation.

Keywords: queueing theory, vacation model, BMAP, M/G/1-type
process.

1 Introduction

Queueing models with server vacation have been studied in the last decades due
to their general modeling capability. In these models the server occasionally takes
a vacation period, in which no customer is served. For details on vacation models
and for their analysis with Poisson arrival process we refer to the comprehensive
survey of Doshi [1] and to the excellent book of Takagi [2].

The batch Markovian arrival process (BMAP) introduced by Lucantoni [3]
enables more realistic and more accurate traffic modeling than the (batch) Pois-
son process. Consequently analysis of queueing models with BMAP attracted a
great attention. The vast majority of the analyzed BMAP/G/1 queueing models
exploit the underlying M/G/1-type structure of the model, i.e., that the embed-
ded Markov chain at the customer departure epochs is of M/G/1-type [4] in
which the block size in the transition probability matrix equals to the number
of phases of the BMAP . Hence most of the analysis of BMAP/G/1 vacation
models are based on the standard matrix analytic-method pioneered by Neuts
[5] and further extended by many others (see e.g., [6]).

Chang and Takine [7] applied the factorization property (presented by Chang
et al. [8]) to get analytical results for queueing models of M/G/1-type with or
without vacations using exhaustive discipline. The factorization property states
� This work is supported by the NAPA-WINE FP7-ICT (http://www.napa-wine.eu)

and the OTKA K61709 projects.

N. Thomas and C. Juiz (Eds.): EPEW 2008, LNCS 5261, pp. 212–226, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Analysis of BMAP/G/1 Vacation Model of Non-M/G/1-Type 213

that the vector probability-generating function (vector PGF or vector GF) of the
stationary queue length is factored into two PGFs of proper random variables.
One of them is the vector PGF of the conditional stationary queue length given
that the server is on vacation.

The class of BMAP/G/1 vacation models, for example with gated discipline
can not be described by an M/G/1-type Markov chain embedded at the customer
departure epochs, because at least one supplementary variable is required to
describe the discipline. In case of gated discipline this variable is the number of
customers not yet served from those present at the beginning of the vacation.

We define the BMAP/G/1 vacation model of non-M/G/1-type as the va-
cation model, which can not be described by an M/G/1-type Markov chain
embedded at the customer departure epochs. Numerous disciplines fall into this
category, like e.g. the gated, the E-limited or the G-limited ones, etc.

Very few literature is available on BMAP/G/1 vacation models of non-
M/G/1-type. Ferrandiz [9] used Palm-martingale calculus to analyze a flexible
vacation scheme. Shin and Pearce [10] studied queue-length dependent vacation
schedules by using the semi-Markov process technique. Recently Banik et al.
[11] studied the BMAP/G/1/N queue with vacations and E-limited service dis-
cipline. They applied supplementary variable technique to get the queue length
distributions and several system performance measures.

The principal goal of this paper is to analyze BMAP/G/1 vacation models
of non-M/G/1-type in a unified framework, which utilizes the advantages of
separating the service discipline independent and dependent parts of the analysis.

The contributions of this paper are twofold. The main contribution is the new
service discipline independent formulas for the vector GF of the stationary number
of customers and for its mean, both in terms of the vector GF of the stationary
number of customers at start of vacation, and its factorial moments, respectively.

The second contribution is the new results for the BMAP/G/1 vacation mod-
els with gated and G-limited disciplines. To the best knowledge of the authors,
no results are available for these vacation models of non-M/G/1-type. For both
models system equations are setup, which can be numerically solved by methods
for systems of linear equations. Afterwards the required quantities at the start
of the vacation can be computed.

The rest of this paper is organized as follows. In section II we introduce the
model and the notations. The derivation of the stationary number of customers in
vacation follows in Section III. The new formulas of the vector GF of the stationary
number of customers at an arbitrary moment and its mean are derived in section
IV. In section V we present the analysis of vacation models of non-M/G/1-type.
Numerical example follows in section VI. We give final remarks in section VII.

2 Model and Notation

2.1 BMAP Process

We give a brief summary on the BMAP related definitions and notations. For
more details we refer to [3].

214 Zs. Saffer and M. Telek

Λ(t) denotes the number of arrivals in (0, t]. J(t) is the state of a background
continuous-time Markov chain (CTMC) at time t, which is referred to as phase
and phase process, respectively. The BMAP batch arrival process is charac-
terized by {(Λ(t), J(t)) ; t ≥ 0} bivariate CTMC on the state space (Λ(t), J(t));
where (Λ(t) ∈ {0, 1, . . .}, J(t) ∈ {1, 2, . . . , L}). Its infinitesimal generator is:⎛⎜⎜⎜⎜⎜⎝

D0 D1 D2 D3 . . .
0 D0 D1 D2 . . .
0 0 D0 D1 . . .
0 0 0 D0 . . .
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎠ ,

where 0 is an L × L matrix and {Dk; k ≥ 0} is a set of L × L matrices.
D0 and {Dk; k ≥ 1} govern the transitions corresponding to no arrivals and

to batch arrivals with size k, respectively. The irreducible infinitesimal generator
of the phase process is D =

∑∞
k=0 Dk. Let π be the stationary probability vector

of the phase process. Then πD = 0 and πe = 1 uniquely determine π, where e is
the column vector having all elements equal to one. D̂(z), the matrix generating
function of Dk is defined as

D̂(z) =
∞∑

k=0

Dkzk, |z| ≤ 1. (1)

The stationary arrival rate of the BMAP,

λ = π
d

dz
D̂(z)

∣∣∣∣
z=1

e = π

∞∑
k=0

kDke, (2)

is supposed to be positive and finite.

2.2 The BMAP/G/1 Queue with Server Vacation

Batch of customers arrive to the infinite buffer queue according to a BMAP
process defined by D̂(z). The service times are independent and identically dis-
tributed. B, B(t), b, b(2) denote the service time r.v., its cumulated distribution
function and its first two moments, respectively. The mean service time is posi-
tive and finite, 0 < b < ∞.

The server occasionally takes vacations, in which no customer is served. After
finishing the vacation the server continues to serve the queue. The model with
this strategy is called queue with single vacation. If no customer is present in
the queue after finishing the vacation, the server immediately takes the next
vacation. We define the cycle time as a service period and a vacation period
together. The server utilization is ρ = λb. On the vacation model we impose the
following assumptions:

A.1 Independence property: The arrival process and the customer service
times are mutually independent. In addition the customer service time is inde-
pendent of the sequence of vacation periods that precede it.

Analysis of BMAP/G/1 Vacation Model of Non-M/G/1-Type 215

A.2 Customer loss-free property: All customers arriving to the system will be
served. Thus the system has infinite queue and ρ < 1.

A.3 Nonpreemtive service property: The service is nonpreemtive. Hence the
service of the actual customer is finished before the server goes to vacation.

A.4 Phase independent vacation property: The length of the vacation period
is independent of the arrival process and from the customer service times.

In the following [Y]i,j stands for the i, j-th element of matrix Y. Similarly
[y]j denotes the j-th element of vector y.

We define matrix Ak, whose (i, j)-th element denotes the conditional proba-
bility that during a customer service time the number of arrivals is k and the
initial and final phases of the BMAP are i and j, respectively. That is, for k ≥ 0,
1 ≤ i, j ≤ L,

[Ak]i,j = P {Λ(B) = k, J (B) = j|J (0) = i} .

The matrix GF Â(z) is defined as Â (z) =
∑∞

k=1 Akzk. Â (z) can be expressed
explicitly as [3]

Â (z) =
∫ ∞

t=0

e
�D(z)tdB(t).

For later use we also express π
(
I − d�A(z)

dz

∣∣∣
z=1

)
e, where I denotes the unity

matrix. To this end we rewrite the term π d�A(z)
dz

∣∣∣
z=1

e as

π
d�A (z)

dz

�����
z=1

e = π
dE
�
e
�D(z)B

�
dz

������
z=1

e = πE

�� ∞�
k=0

d
��D(z)

k
�

dz

������
z=1

e
Bk

k!

�� =

E

	 ∞�
k=1

πDk−1 d�D (z)

dz

�����
z=1

e
Bk

k!

= π

d�D (z)

dz

�����
z=1

e E (B) = λb = ρ,

where we used that πD = 0.
Now the term π

(
I − d�A(z)

dz

∣∣∣
z=1

)
e can be given explicitly as

π

(
I − dÂ (z)

dz

∣∣∣∣∣
z=1

)
e = 1 − ρ. (3)

V , V (t), v denote the vacation time r.v., its cumulated distribution function
and its mean, respectively. The mean vacation time is positive and finite, 0 <
v < ∞. Similar to the quantities associated with the service period, we define
matrix Uk, whose elements, for k ≥ 0, 1 ≤ i, j ≤ L, are

[Uk]i,j = P {Λ(V) = k, J (V) = j|J (0) = i} ,

and the matrix GF Û (z) =
∑∞

k=1 Ukzk =
∫ ∞

t=0 e
�D(z)tdV (t).

216 Zs. Saffer and M. Telek

Our vacation model is similar to the generalized vacation model for the M/G/1
queue defined in Fuhrmann and Cooper [12]. The phase independent vacation
property A.4 corresponds to the independence assumption 6. of [12].

Vacation models are distinguished by their (service) discipline that is the set of
rules determining the beginning and the end of the vacation (service). Commonly
applied service disciplines are, e.g., the exhaustive, the gated, the limited, etc. In
case of exhaustive discipline, the server continues serving the customers until the
queue is emptied. Under gated discipline only those customers are served, which
are present at the beginning of the service period. In case of E-limited discipline
either N customers are served in a service period or the queue becomes empty
before and the service period ends. In case of G-limited discipline at most N
customers are served among the customers, which are present at the beginning
of the service period.

3 Stationary Number of Customers in the Vacation
Period

We define N(t) as the number of customers in the system at time t, and q̂ (z)
and q̂v (z) as the vector GFs of the stationary number of customers and of the
stationary number of customers during the vacation period, respectively. The
elements of q̂ (z) and q̂v (z) are defined as

[q̂ (z)]j = lim
t→∞

∞∑
n=0

P {N (t) = n, J (t) = j} zn, |z| ≤ 1, and

[q̂v (z)]j = lim
t→∞

∞∑
n=0

P {N (t) = n, J (t) = j | t ∈ vacation period} zn, |z| ≤ 1,

respectively.
Furthermore, tmk denotes the start of vacation (the instant just after the com-

pletion of service) in the k-th cycle. The vector GF, m̂ (z), is defined by its
elements as

[m̂ (z)]j = lim
k→∞

∞∑
n=0

P {N(tmk) = n, J(tmk) = j} zn, |z| ≤ 1.

Theorem 1. The following relation holds for the vector GF of the stationary
number of customers in the vacation period:

q̂v (z) D̂(z) =
m̂ (z)

(
Û (z) − I

)
v

. (4)

Analysis of BMAP/G/1 Vacation Model of Non-M/G/1-Type 217

Proof. The matrix GF of the number of customers arriving during the vacation
period is E

(
e
�D(z)V

)
, from which

E
(
e
�D(z)V

)
=

∫ ∞

t=0

e
�D(z)tdV (t) = Û(z). (5)

The vector GF of the stationary number of customers in the system at instant
τ in the vacation period is m̂(z) e

�D(z)τ , where the first term stands for the
stationary number of customers in the system at the beginning of the vacation
and the second term stands for the number of customers arriving in the (0, τ)
interval of the vacation period. To obtain the stationary number of customers
during the vacation period we need to average the number of customers in the
system over the duration of the vacation period

q̂v(z) =
m̂(z)E

(∫ V

τ=0 e
�D(z)τdτ

)
E (V)

. (6)

Based on the definition of q̂v(z), we have q̂v(1) e = 1. Indeed the numerator
of (6) at z = 1 multiplied by e can be written as

E

(∫ V

τ=0̂

m(1)
(
eDτ e

)
dτ

)
= E

(∫ V

τ=0̂

m(1) e dτ

)
= E

(∫ V

τ=0

1 dτ

)
= E(V),(7)

because eDτ is a stochastic matrix and consequently eDτ e = e. Multiplying
both sides of (6) by D̂(z) and using E(V) = v we have

q̂v(z) D̂(z) =
1
v

m̂(z)E

(∫ V

τ=0

e
�D(z)τ D̂(z) dτ

)
. (8)

The integral term can be rewritten as∫ V

τ=0

e
�D(z)τ D̂(z) dτ =

∫ V

τ=0

∞∑
k=0

τkD̂(z)k

k!
D̂(z) dτ =

∞∑
k=0

∫ V

τ=0

τk dτ
D̂(z)k+1

k!
=

∞∑
k=0

V k+1

k + 1
D̂(z)k+1

k!
= e

�D(z)V − I.

(9)

Using (5) and (9) the theorem comes from (8). Q.E.D.

4 Service Discipline Independent Stationary Relations

4.1 Vector GF of the Stationary Number of Customers

Theorem 2. The following service discipline independent relation holds for the
vector GF of the stationary number of customers at an arbitrary instant:

218 Zs. Saffer and M. Telek

q̂ (z) D̂ (z)
(
zI − Â(z)

)
=

m̂ (z)
(
Û (z) − I

)
v

(1 − ρ) (z − 1) Â(z). (10)

Proof. Chang et al. [8] provided a factorization formula for the BMAP/G/1
queue with generalized vacations:

q̂ (z)
(
zI − Â(z)

)
= q̂v (z) (1 − ρ) (z − 1) Â(z). (11)

The theorem can be obtained by multiplying both sides of (11) by D̂ (z) from
the right and applying (4), because Â(z) and D̂(z) commute, as can be seen
from the Taylor expansion of Â(z). Q.E.D.

Note that the contribution of the concrete service discipline to the relation (10)
is incorporated by the quantity m̂ (z).

4.2 The Mean of the Stationary Number of Customers

This subsection presents the service discipline independent solution for the mean
of the stationary number of customers in the system based on its vector GF
(10). To this end, we introduce the following notations. When Ŷ(z) is a GF,
Y(i) denotes it i-th (i ≥ 1) factorial moment, i.e., Y(i) = di

dzi Ŷ(z)|z=1, and Y
denotes its value at z = 1, i.e., Y = Ŷ(1). We apply these conventions for D̂ (z),
Â (z), Û (z), q̂ (z), m̂ (z) and for the later defined r̂ (z) and t̂ (z).

Theorem 3. The service discipline independent solution for the mean of the
stationary number of customers at an arbitrary instant is given by:

q(1) =
m(1)

λv

(
U(1)eπ + (U − I)

(
A(1) − A (D + eπ)−1 D(1)

)
eπ

)
(12)

+
m
λv

(
1
2
U(2)eπ +

1
2

(U − I) A(2)eπ + U(1)A(1)eπ

)
− m

λv

(
U(1)A + (U − I) A(1)

)
(D + eπ)−1 D(1)eπ

+
m
λv

(
U(1)Aeπ + (U − I) A(1)eπ

)(
C2eπ

λ
+ (1 − ρ) C1

)
+

m
λv

(U − I) A (D + eπ)−1
(
λI − D(1)eπ

) (
C2eπ

λ
+ (1 − ρ) C1

)
+ π

(
A(2)eπ

2 (1 − ρ)
−

(
I − A(1)

)
C1

)
,

where matrices C1 and C2 are defined as

C1 = (I − A + eπ)−1

(
A(1)eπ

(1 − ρ)
+ I

)
, C2 = D(1) (D + eπ)−1 D(1) − 1

2
D(2).

Analysis of BMAP/G/1 Vacation Model of Non-M/G/1-Type 219

To prove the theorem we need the following lemmas.

Lemma 1. The term q(1) can be expressed from (14) in terms of r(1) and r(2)e
as follows:

q(1) =
r(2)eπ

2 (1 − ρ)
+ r(1)C1 + π

(
A(2)eπ

2 (1 − ρ)
−

(
I − A(1)

)
C1

)
, (13)

where vector r̂ (z) is defined as

r̂ (z) = q̂ (z)
(
zI − Â(z)

)
. (14)

Proof. Starting from (14) we apply the method used by Lucantoni in [3] and
Neuts in [4], which utilizes that (I − A + eπ) is nonsingular. Taking the first
two derivatives of (14) at z = 1, we get:

q(1) (I − A) = r(1) − π
(
I − A(1)

)
, (15)

q(2) (I − A) = r(2) − 2q(1)
(
I − A(1)

)
+ πA(2). (16)

Adding q(1)eπ to both sides of (15) and using π (I − A + eπ)−1 = π leads
to

q(1) =
�
q(1)e

�
π +

�
r(1) − π

�
I − A(1)

��
(I − A + eπ)−1 . (17)

The next step is to get the unknown term
(
q(1)e

)
in (17). Post-multiplying

(16) by e and post-multiplying (17) by
(
I − A(1)

)
e and rearranging gives

q(1)
(
I − A(1)

)
e =

1
2
r(2)e +

1
2
πA(2)e, (18)

q(1)
(
I − A(1)

)
e =

(
q(1)e

)
π

(
I − A(1)

)
e (19)

+
(
r(1) − π

(
I − A(1)

))
(I − A + eπ)−1

(
I − A(1)

)
e,

respectively. Combining (18) and (19) and applying π
(
I − A(1)

)
e = 1−ρ results

in the expression of the required term:

q(1)e =
1

2 (1 − ρ)

(
r(2)e + πA(2)e

)
+ (20)

1
(1 − ρ)

(
π

(
I − A(1)

)
− r(1)

)
(I − A + eπ)−1

(
I − A(1)

)
e.

220 Zs. Saffer and M. Telek

We can simplify (20) by using (I − A + eπ)−1 e = e and(
r(1) − π

(
I − A(1)

))
e = 0 from (15):

q(1)e =
1

2 (1 − ρ)

(
r(2)e + πA(2)e

)
(21)

+
1

(1 − ρ)

(
r(1) − π

(
I − A(1)

))
(I − A + eπ)−1 A(1)e.

Substituting (21) into (17) leads to:

q(1) =
r(2)eπ

2 (1 − ρ)
+ r(1)

�
1

1 − ρ
(I − A + eπ)−1 A(1)eπ + (I − A + eπ)−1

�
(22)

+ π

�
A(2)eπ

2 (1 − ρ)

�
− π

�
1

1 − ρ

�
I − A(1)

�
(I − A + eπ)−1 A(1)eπ +

�
I − A(1)

�
(I − A + eπ)−1

�
.

Substituting matrix C1 into (22) results in the statement. Q.E.D.

Lemma 2. The terms r(1) and r(2)e can be expressed from (25) in terms of t(1),
t(2)e, t(2) and t(3)e as follows:

r(1) =
t(2)eπ

2λ
+ t(1) (D + eπ)−1

(
I − D(1)eπ

λ

)
, (23)

r(2)e =
t(3)e
3λ

− t(2)

λ
(D + eπ)−1 D(1)e +

t(2)eπ

2λ

2C2e
λ

+ (24)

t(1) (D + eπ)−1

(
I − D(1)eπ

λ

)
2C2e

λ
,

where vector t̂ (z) is defined as

t̂ (z) = r̂ (z) D̂ (z) . (25)

Proof. We apply again the same method as in Lemma 1, but now utilizing that
(D + eπ) is nonsingular. Setting z = 1 in (14) we get:

r = π (I − A) = 0. (26)

Taking the first three derivatives of (25) and applying (26) results in

r(1)D = t(1), (27)
r(2)D = t(2) − 2r(1)D(1), (28)
r(3)D = t(3) − 3r(2)D(1) − 3r(1)D(2). (29)

Adding r(1)eπ to both sides of (27) and using π (D + eπ)−1 = π we obtain

r(1) =
(
r(1)e

)
π + t(1) (D + eπ)−1

. (30)

Analysis of BMAP/G/1 Vacation Model of Non-M/G/1-Type 221

Post-multiplying (28) by e and (30) by D(1)e after rearranging yields

r(1)D(1)e =
1
2
t(2)e, (31)

r(1)D(1)e =
(
r(1)e

)
πD(1)e + t(1) (D + eπ)−1 D(1)e, (32)

respectively. Combining (31) and (32) and applying πD(1)e = λ results in:

r(1)e =
1
2λ

t(2)e − 1
λ
t(1) (D + eπ)−1 D(1)e. (33)

Substituting (33) into (30) results in the first statement.
Adding r(2)eπ to both sides of (28) gives:

r(2) =
(
r(2)e

)
π +

(
t(2) − 2r(1)D(1)

)
(D + eπ)−1 . (34)

Post-multiplying (29) by e and (34) by D(1)e after rearranging leads to

r(2)D(1)e =
1
3
t(3)e − r(1)D(2)e, (35)

r(2)D(1)e =
(
r(2)e

)
πD(1)e +

(
t(2) − 2r(1)D(1)

)
(D + eπ)−1 D(1)e, (36)

respectively. Combining (35) and (36) and applying πD(1)e = λ results in:

r(2)e =
1

3λ
t(3)e − 1

λ
r(1)D(2)e +

1
λ

(
2r(1)D(1) − t(2)

)
(D + eπ)−1 D(1)e. (37)

Substituting (23) into (37) leads to:

r(2)e =
t(3)e
3λ

− t(2)

λ
(D + eπ)−1 D(1)e +

t(2)eπ

2λ

�
2D(1)

λ
(D + eπ)−1 D(1)e − D(2)e

λ

�
+ t(1) (D + eπ)−1

�
I − D(1)eπ

λ

��
2D(1)

λ
(D + eπ)−1 D(1)e − D(2)e

λ

�
. (38)

Inserting matrix C2 into (38) results in the second statement. Q.E.D.

Proof. PROOF OF THEOREM 3
Due to the fact that D̂(z) and Â(z) commute t̂(z) equals to the left hand size

of (10)

t̂ (z) = q̂ (z) D̂ (z)
(
zI − Â(z)

)
. (39)

We apply Lemma 1 and 2 to get q(1) from (39). Substituting (23) and (24)
into (13) gives the expression of q(1) in terms of t(1), t(2)e, t(2) and t(3)e:

222 Zs. Saffer and M. Telek

q(1) =
t(3)eπ

6λ (1 − ρ)
− t(2)

2λ (1 − ρ)
(D + eπ)−1 D(1)eπ (40)

+
t(2)eπ

2λ (1 − ρ)

(
C2eπ

λ
+ (1 − ρ) C1

)
+

t(1)

(1 − ρ)
(D + eπ)−1

(
I − D(1)eπ

λ

) (
C2eπ

λ
+ (1 − ρ) C1

)
+ π

(
A(2)eπ

2 (1 − ρ)
−

(
I − A(1)

)
C1

)
.

Substituting (10) into (39) yields:

t̂ (z) =
m̂ (z)

(
Û (z) − I

)
v

(1 − ρ) (z − 1) Â(z). (41)

Taking the first three derivatives of t̂ (z) at z = 1:

t(1) = (1 − ρ)
m
v

(U − I) A, (42)

t(2) = 2 (1 − ρ)
m(1)

v
(U − I) A + 2 (1 − ρ)

m
v

(
U(1)A+(U − I) A(1)

)
, (43)

t(2)e = 2 (1 − ρ)
m
v

(
U(1)Ae + (U − I) A(1)e

)
, (44)

t(3)e = 6 (1 − ρ)
m(1)

v

(
U(1)e + (U − I) A(1)e

)
+ 3 (1 − ρ)

m
v

(
U(2)e + (U − I) A(2)e + 2U(1)A(1)e

)
. (45)

Substituting (42), (43), (44) and (45) into (40) gives the theorem. Q.E.D.

Note that in (12) the impact of the concrete service discipline on the mean of
the stationary number of customers is expressed by the quantities m(1) and m.

5 Vacation Models of Non-M/G/1-Type

Let tfk denotes the end of vacation (the instant just before the start of service)
in the k-th cycle. The vectors fn and mn, n ≥ 0, are defined by their elements
as

[fn]j = lim
k→∞

P
{
N(tfk) = n, J(tfk) = j

}
,

[mn]j = lim
k→∞

P {N(tmk) = n, J(tmk) = j} ,

To get the unknown quantities m, m(1) in (12), we compute the stationary
probability vectors mn, n ≥ 0. For doing that we setup a system of linear
equations for each studied discipline.

Analysis of BMAP/G/1 Vacation Model of Non-M/G/1-Type 223

5.1 Vacation Model with Gated Discipline

Theorem 4. In the vacation model with gated discipline the probability vectors
mn, n ≥ 0 are determined by the following system equation:

∞∑
n=0

mn

∞∑
k=0

Uk

(
Â (z)

)k (
Â (z)

)n

=
∞∑

n=0

mnzn. (46)

Proof. Each customer, who is present at the end of the vacation, generates a ran-
dom population of customers arriving during its service time. The GF of number
of customers in this random population is Â (z). Hence the governing relation for
transition f → m of the vacation model with gated discipline is given by

∞∑
n=0

fn
(
Â (z)

)n

=
∞∑

n=0

mnzn. (47)

The number of customers at the end of the vacation equals the sum of those
present at the beginning of the vacation and those who arrived during the vacation
period. Applying the phase independent vacation property A.4, we get discipline
independent governing relation for transition m → f of the vacation model

n∑
k=0

mkUn−k = fn. (48)

Combining (47) and (48) and rearranging results in the statement. Q.E.D.

To compute the probability vectors mn a numerical method can be developed
by setting a ρ dependent upper limit X for n and k in (46). Taking the x-th
derivatives of (46) at z = 1, where x = 0, . . . , X , leads to a system of linear
equations, in which the number of equations and the number of unknowns is
L (X + 1):

X�
n=0

mn

X�
k=0

Uk

x�
l=0

�
x
l

� d(x−l)
���A (z)

�k
�

dz(x−l)

��������
z=1

dl
���A (z)

�n�
dzl

��������
z=1

=
X�

n=x

mn
n!

(n − x)!
, x = 0, . . . , X. (49)

5.2 Vacation Model with G-Limited Discipline

Theorem 5. In the vacation model with G-limited discipline the probability vec-
tors mn, n ≥ 0 are determined by the following system equation:

K∑
n=0

n∑
k=0

mkUn−k

(
Â (z)

)n

+
∞∑

n=K+1

n∑
k=0

mkUn−k

(
Â (z)

)K

=
∞∑

n=0

mnzn.(50)

224 Zs. Saffer and M. Telek

Proof. According to the G-limited discipline, the service is gated up to a max-
imum number K of customers present at the beginning of service. Hence the
governing relation for transition f → m of the vacation model with G-limited
discipline is given by

K∑
n=0

fn
(
Â (z)

)n

+
∞∑

n=K+1

fn
(
Â (z)

)K

=
∞∑

n=0

mnzn. (51)

Combining (51) with the discipline independent governing relation for transi-
tion m → f (48) and rearranging leads to the statement. Q.E.D.

Again to compute the probability vectors mn a numerical method can be de-
veloped by setting a ρ dependent upper limit X for n in (50). Taking the x-th
derivatives of (50) at z = 1, where x = 0, . . . , X , leads to a system of linear
equations, in which the number of equations and the number of unknowns is
L (X + 1):

K�
n=0

n�
k=0

mkUn−k

dx
���A (z)

�n�
dzx

������
z=1

+
X�

n=K+1

n�
k=0

mkUn−k

dx

���A (z)
�K
�

dzx

��������
z=1

=
X�

n=x

mn
n!

(n − x)!
, x = 0, . . . , X. (52)

6 Numerical Example

We provide a simple numerical example just with illustrative purpose for the
case of vacation model with gated discipline.

The arrival process is given by

D̂(z) = D0 + zD1,

D0 =
(
−λ1 − β1 λ1

0 − λ2 − β2

)
, D1 =

(
0 β1

λ2 β2

)
.

The customer service time is constant with value B = τ , and hence

Â (z) =
∫ ∞

t=0

e(D0+zD1)tdB(t) = e(D0+zD1)τ .

The vacation time V is exponential with parameter γ. It follows

Uk =
(

(−D0 + γI)−1 D1

)k

(−D0 + γI)−1 γI, k ≥ 0.

We set X = 3 and the following parameter values:

λ1 = 1, λ2 = 2, β1 = 3, β2 = 4, τ = 0.01, γ = 10.

Analysis of BMAP/G/1 Vacation Model of Non-M/G/1-Type 225

Based on (49) these results in 2(X + 1) = 8 equations, whose solution is

m0 = (0.3539940000, 0.6233670000),
m1 = (0.0060541700, 0.0156250000),
m2 = (0.0002602540, 0.0006635270),
m3 = (0.0000101579, 0.0000260429),

from which

m =
3∑

n=0

mn = (0.360318, 0.639682),

m(1) =
3∑

n=0

n mn = (0.00660515, 0.0170302).

The following table illustrates the dependency of m and m(1) on the para-
meter γ:

γ m m(1)

5 (0.415355, 0.584645) (0.00992439, 0.02573280)
10 (0.360318, 0.639682) (0.00660515, 0.01703020)
20 (0.341865, 0.658135) (0.00368462, 0.00944405)

7 Final Remarks

A simple numerical algorithm to solve (46) and (50) can be developed by means
of consecutive manyfold solution of the corresponding system of linear equations.
Starting with an initial X , X is doubled in each iteration until the absolute error
becomes less than the prescribed limit.

It is a topic of future work to investigate the numerical solutions of the system
equations (46) and (50) and to evaluate the complexity of the above mentioned
numerical procedure.

The phase independent vacation property A.4 can be relaxed, and hence the
presented analysis can be extended to the case, when the vacation period depends
on at least the phase of the BMAP .

Moreover the model can be also extended by handling further quantities like
the set-up time or repair time.

References

1. Doshi, B.T.: Queueing systems with vacations - a survey. Queueing Systems 1,
29–66 (1986)

2. Takagi, H.: Queueing Analysis - A Foundation of Performance Evaluation, Vacation
and Prority Systems, vol. 1. North-Holland, New York (1991)

226 Zs. Saffer and M. Telek

3. Lucantoni, D.L.: New results on the single server queue with a batch Markovian
arrival process. Stochastic Models 7, 1–46 (1991)

4. Neuts, M.F.: Structured stochastic matrices of M/G/1 type and their applications.
Marcel Dekker, New York (1989)

5. Neuts, M.F.: Matrix-Geometric Solutions in Stochastic Models: An Algorithmic
Approach. John Hopkins University Press, Baltimore (1981)

6. Lucantoni, D.L.: The BMAP/G/1 queue: A tutorial. In: Donatiello, L., Nelson,
R. (eds.) Models and Techniques for Performance Evaluation of Computer and
Communications Systems. Springer Verlag, Heidelberg (1993)

7. Chang, S.H., Takine, T.: Factorization and Stochastic Decomposition Properties
in Bulk Queues with Generalized Vacations. Queueing Systems 50, 165–183 (2005)

8. Chang, S.H., Takine, T., Chae, K.C., Lee, H.W.: A unified queue length formula
for BMAP/G/1 queue with generalized vacations. Stochastic Models 18, 369–386
(2002)

9. Ferrandiz, J.M.: The BMAP/G/1 queue with server set-up times and server vaca-
tions. Adv. Appl. Prob. 25, 235–254 (1993)

10. Shin, Y.W., Pearce, C.E.M.: The BMAP/G/1 vacation queue with queue-length
dependent vacation schedule. J. Austral. Math. Soc. Ser. B 40, 207–221 (1998)

11. Banik, A.D., Gupta, U.C., Pathak, S.S.: BMAP/G/1/N queue with vacations and
limited service discipline. Applied Mathematics and Computation 180, 707–721
(2006)

12. Fuhrmann, S.W., Cooper, R.B.: Stochastic Decompositions in the M/G/1 Queue
with Generalized Vacations. Operations Research 33, 1117–1129 (1985)

Stochastic Bounds for Partially Generated

Markov Chains: An Algebraic Approach

Ana Bušić1 and Jean-Michel Fourneau1,2

1 INRIA Grenoble - Rhône-Alpes
51, Av. J. Kuntzmann, 38330 Montbonnot, France

2 PRiSM, Université de Versailles-St-Quentin
45, Av. des Etats-Unis, 78035 Versailles, France

Abstract. We propose several algorithms to obtain bounds based on
Censored Markov Chains to analyze partially generated discrete time
Markov chains. The main idea is to avoid the generation of a huge (or
even infinite) state space and to truncate the state space during the
visit. The approach is purely algebraic and provides element-wise and
stochastic bounds for the CMC.

1 Introduction

Even if it is simple to model systems with Markov chains, the analysis of such
chains is still a hard problem when they do not exhibit some regularity or symme-
try which allow analytical techniques or lumping. Furthermore, some transitions
rates may be unknown. An alternative approach is to compute bounds on the re-
wards we need to check against requirements. We first bound the steady-state or
transient distributions at time t. We define the elementary reward for all states
and compute the expected reward by a simple summation of the product of the
elementary rewards by the state probabilities. The main difficulty is to obtain
a bound of the steady state or transient distributions. The key idea is to derive
a smaller chain which provides a bound. Several algorithms have been proposed
to obtain some stochastic bounds on Discrete Time Markov Chains (DTMC).
Most of these algorithms have used the lumpability approach to reduce the size
of the chain [1,6,7,16]. Stochastic comparison of DTMC can also be applied when
some transition probabilities are unknown [2,10]. Recently a new approach based
on Censored Markov Chain (CMC) have been proposed [4,8] to deal with large
or infinite DTMC. Here we present new algorithms based on CMC when only
some parts of the matrix are known. Indeed, when the state space is very large
or infinite, we have to truncate the chain during the generation and only some
parts of the matrix are computed [5]. CMCs provide an efficient way to describe
such a truncated generation.

Consider a DTMC {Xt : t = 0, 1, . . .} with a finite state space S. Suppose that
S = A∪Ac, A∩Ac = ∅. Suppose that the successive visits of Xt to A take place
at time epochs 0 ≤ t0 < t1 < . . . Then the chain {XA

u = Xtu , u = 0, 1, . . .} is
called the censored chain with censoring set A [17]. Let Q denote the transition

N. Thomas and C. Juiz (Eds.): EPEW 2008, LNCS 5261, pp. 227–241, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

228 A. Bušić and J.-M. Fourneau

probability matrix of chain Xt. Consider the partition of the state space to obtain
a block description of Q:

Q =
[
QAA QA∗
Q∗A Q∗∗

]
A
Ac

The censored chain only observes the states in A. Assume that the chain is
ergodic (it may be finite or infinite). It can be proved [17] that the stochastic
matrix of the censored chain is:

SAA = QAA + QA∗(I − Q∗∗)−1Q∗A = QAA + QA∗

(∞∑
i=0

(Q∗∗)i

)
Q∗A. (1)

The second term of the right-hand side represents the probabilities of paths that
return to set A through states in Ac.

Censored Markov chains have also been called restricted or watched Markov
chains. They are also strongly related to the theory of stochastic complement
[11]. Note that it is not necessary for censored Markov chains to be ergodic and
we can study for instance the absorption time [8]. However, we assume in this
paper that the chains are ergodic and that the CMC is finite.

In many problems, initial chain Q can be large or even infinite or some tran-
sition rates may be unknown. Therefore, it is difficult or even impossible to
compute (I − Q∗∗)−1 to finally get SAA. Deriving bounds of SAA from QAA

and from some information on the other blocks is thus an interesting alternative
approach. Note that we may have various interesting cases:

– Partial Generation: Q∗∗ and Q∗A are difficult to build or contain unknown
rates while QAA is easy to compute from the specifications.

– Complete Generation: all the blocks are easy to compute but (I − Q∗∗) is
difficult to invert because of its size.

Our major concern is the difficulty to obtain a complete description of the
block Q∗A from a high-level specification framework such as a Stochastic Process
Algebra model or a set of stochastic equations. They provide a continuous time
Markov chain which can be uniformized to obtain a DTMC. All these formalisms
are very efficient in describing forward transitions (i.e. transitions from state x to
any state of the chain). Thus we can easily obtain the rows of matrix QAA. The
first problem is to find the reachable state space to define Ac (the set of reachable
states which are not censored). Remember that the reachability problem is a time
consuming question in many high-level specification languages. Let us now turn
to the block Q∗A. We have typically four problems :

– Reachability. Even with a tensor based approach it is hard to find the reach-
able state space. For a Stochastic Automata Network (SAN) we define a
product space which contains the reachable state space [14]. It is simple to
find the column of the matrix associated to a SAN or to any tensor based
model with an algorithm developed by Sbeity in [9], but we build the column

Stochastic Bounds for Partially Generated Markov Chains 229

of the matrix for the product state space which is a superset of the reachable
state space. We must remove the rows associated to non reachable states to
obtain block Q∗A which is difficult because of the reachability problem.

– Inversion of a stochastic equation. For some high-level specification lan-
guages, transitions out of x are described by a stochastic recurrence equation
Xn+1 = f(Xn, U), where U is a random variable. This is typically the case
when one describes queues. But the transitions entering state x are described
by function f−1. This problem is very similar to the computation of the in-
verse function of a distribution. For some functions f , it is well known in
simulation that the complexity of the computation of the inverse of function
f is highly dependent on the state where we invert the function.

– Infinite State Space. When the chain is infinite, Q∗A has an infinite number
of rows and it is not possible to generate all of them.

– Unknown rates. Assume that some rates of a transition from y to x in A are
unknown. Assume that y is not a censored state. Then the transition from
y to x is in column x of Q∗A. Here we consider that if a rate is missing in a
column, the complete column of the block is unknown.

In [15], Truffet has proposed a two-level algorithm for Nearly Completely
Decomposable (NCD) chains by using aggregation and stochastic ordering to
compute bounding distributions. In [13], Truffet’s approach has been combined
with state reordering to improve the accuracy of a component-wise probability
bounding algorithm. In these works, before employing the aggregation of blocks,
the slack probabilities βi = 1 −

∑
j∈A Q[i, j], i ∈ A (which are small due to the

NCD structure) are included in the last column for the upper bound and in the
first column for the lower bound. Clearly Truffet’s approach is optimal when only
the block QAA has been computed. Indeed the bound is tight in that case. For
general Markov chains (i.e. not NCD), Dayar, Pekergin, and Younes proposed
recently an algebraic approach to dispatch slack probabilities when blocks QAA

and Q∗A are known [4]. In this paper, we will refer to their algorithm as DPY.
DPY exhibits a desirable feature: under some algebraic conditions it provides
the exact result (see [4] for a proof and some examples):

Property 1. If block Q∗A has rank 1, then the bound given by DPY is exact.

However, DPY needs both QAA and Q∗A to be known. Bounds of SAA have also
been derived in [8] in a completely different way by applying graph algorithms.
This approach requires that QAA is computed and some parts (not necessary all
elements) of Q∗A, Q∗∗ and QA∗ are known. Here we propose a new approach
and several algorithms which require less information on the blocks.

The paper is organized as follows. In Sect. 2 we present a brief introduction
to stochastic bounds and CMC. Sect. 3 is devoted to the main concept and
the first algorithm we obtained when Q∗A is known and satisfies some algebraic
constraints. We also show that this first algorithm also gives exact result when
Q∗A has rank 1. In Sect. 4, we present new algorithms when some columns of
Q∗A are unknown, based on various assumptions on Q∗A. Due to the number of
algorithms proposed, we do not have enough space to present a large example.
Instead we show on small matrices how the algorithms perform.

230 A. Bušić and J.-M. Fourneau

2 Some Fundamental Results on Stochastic Bounds

We give first the definition of strong stochastic ordering of random variables
on a finite state space {1, . . . , n}. Let X and Y be two random variables with
probability vectors p and q (pk = P (X = k), qk = P (Y = k), ∀k). Throughout
the paper, all the vectors are column vectors, vt denotes a transposed vector,
and �el element-wise comparison of two vectors (or matrices).

Definition 1. X �st Y if
∑n

k=j pk ≤
∑n

k=j qk, ∀j.

Let {Xt}t≥0 and {Yt}t≥0 be two DTMC with transition probability matrices
P and Q. Then we say that {Xt}t≥0 �st {Yt}t≥0 if Xt �st Yt for all t ≥ 0.
Sufficient conditions for comparison of two DTMC are given by the following
classical theorem [12]:

Theorem 1. {Xt}t≥0 �st {Yt}t≥0 if X0 �st Y0 and there exists a transition
probability matrix R such that:

– P �st R �st Q, i.e. P [i, ∗] �st R[i, ∗] �st Q[i, ∗], ∀i (comparison),
– R[i − 1, ∗] �st R[i, ∗], ∀i > 1 (monotonicity).

Furthermore, if both chains are ergodic, then πP �st πQ (where πP and πQ are
the steady-state distributions).

The above conditions can be easily checked algorithmically. Furthermore, it is
also possible to construct a monotone upper bound for an arbitrary stochastic
matrix P [3]. We define operators r and v as in [3]:

– r(P)[i, j] =
∑n

k=j P [i, k], ∀i, j,

– v(P)[i, j] =
{

r(P)[1, j], if i = 1
max {v(P)[i − 1, j], r(P)[i, j]} , if i > 1 , ∀j.

Remark 1. It it worthy to remark that P �st Q is equivalent to r(P) �el r(Q).

Proposition 1. (Vincent’s algorithm [3]) Let P be any stochastic matrix and
Q = r−1v(P), where r−1 denotes the inverse of r. Then Q is �st-monotone et
P �st Q, therefore (by Theorem 1) Q is a transition probability matrix of an
upper bounding DTMC. Furthermore, if P1 �st P2, then r−1v(P1) �st r−1v(P2).

2.1 CMC and Stochastic Bounds

Let us now consider CMC and it’s transition probability matrix given by (1):

SAA = QAA + QA∗(I − QA)−1Q∗A︸ ︷︷ ︸
Z

Z is a sub-stochastic matrix which shows how the missing transition probability
must be added to QAA to obtain SAA. Truffet proposed in [15] an algorithm for
the case when we know only the block QAA. An upper bound for SAA can be
obtained by adding first the slack of probability mass to the last column, and
then applying operator r−1v to compute a monotone bound. More formally, let
θ be the operator which transforms a sub-stochastic matrix M into a stochastic
matrix by adding in the last column of M all the probability missing in M :

Stochastic Bounds for Partially Generated Markov Chains 231

θ(M)[i, j] =
{

M [i, j], if j < n
M [i, j] + βi, if j = n

, ∀i,

where βi = 1 −
∑n

j=1 M [i, j], ∀i. Of course, if M is stochastic, then θ(M) = M .
The upper bound for SAA proposed in [15] is given by r−1v(θ(QAA)).

Remark 2. Similarly, a monotone lower bound for SAA is given by r−1w(φ(QAA)),
where operator φ adds the slack of probability mass to the first column and

w(P)[i, j] =
{

r(P)[n, j], if i = n
min {w(P)[i + 1, j], r(P)[i, j]} , if i < n

, ∀j.

Notice that operator r−1w corresponds to the maximal st-monotone lower bound.

Suppose now that we have some partial information on Z, given by positive
matrices L and U such that L �el Z �el U. Furthermore, we know that Ze = β,
where e denotes a vector with all components equal to 1.

In the following we describe how we can use matrices L and U to construct an
upper and a lower stochastic bound for SAA that is more accurate than Truffet’s
bound (that uses only the information contained in QAA). Once we have obtained
bounds on SAA, we apply Vincent’s algorithm to check the monotonicity and
analyze the resulting chain to get steady-state or transient distributions (see
[4,8] for more details). Here we only present the computations of the bounds of
SAA under various assumptions on the knowledge of Q∗A.

2.2 Bounds for a Family of Positive Matrices

In a recent paper [10], Haddad and Moreaux have proposed an algorithm to build
a stochastic bound from two element-wise bounding matrices. More precisely,
they are interested in absorption time and they only consider finite transient
Markov chains. They assume that they do not know exactly the stochastic matrix
P they need to analyze (because some terms are difficult to compute), but they
know two positive matrices L and U such that L �el P �el U . In [10], matrix
P is supposed transient (i.e. the last state is absorbing). Let PL,U be the set of
stochastic matrices which satisfy these constraints. They derived an algorithm
to compute the smallest (in the st sense) transient matrix in PL,U . We give in
Algorithm 1 a generalization of that algorithm: a) we don’t need to have any
absorbing state; b) we consider positive matrices (not necessarily stochastic).
Let ML,U,β be a family of positive matrices given by element-wise upper and
lower bounds L and U , and a positive vector of normalization constants β:

ML,U,β = {M : L �el M �el U and Me = β}.

We will use the following operator: �(M)[i, j] =
∑j

k=1 M [i, k], ∀i, j.

Proposition 2. Algorithm 1 computes matrices M and M in ML,U,β such that:

r(M) �el r(M) �el r(M), ∀M ∈ ML,U,β.

232 A. Bušić and J.-M. Fourneau

Proof. Notice that L �el M �el U implies r(L)[i, j] ≤ r(M)[i, j] ≤ r(U)[i, j]
and �(L)[i, j] ≤ �(M)[i, j] ≤ �(U)[i, j], ∀i, j. The proof follows easily from the
fact that r(M)[i, j] = βj − �(M)[i, j − 1], ∀M ∈ ML,U,β. We omit the technical
details. ��

Algorithm 1. r-maximal (M) and r-minimal (M) elements for a family of
positive matrices ML,U,β = {M : L �el M �el U and Me = β}.
Input : β - positive vector; L, U - positive matrices : 0 	el L 	el U 	el eβt

Notation : n - number of lines; m - number of columns
for i = 1 to n do

for j = m downto 2 do
H [i, j] = min{r(U)[i, j], βj − (L)[i, j − 1]};
H [i, j] = max{r(L)[i, j], βj − (U)[i, j − 1]};

end
H[i, 1] = βj ; H[i, 1] = βj ;
M = r−1(H); M = r−1(H);

end

Let us now go back to CMC problem. We assumed that we know matrix QAA

and element-wise lower and upper bounds L and U for Z = QA∗(I −QA)−1Q∗A.
Denote by β = QAAe. Algorithm 1 gives matrices M and M such that r(M) �el

r(Z) �el r(M). Denote by S = QAA + M and S = QAA + M.

Theorem 2. Matrices S and S satisfy:

φ(QAA) �st S �st SAA �st S �st θ(QAA).

Proof. Follows directly from Remark 1. ��

Since operator r−1v (resp. r−1w) preserves the �st-comparison, the upper (resp.
lower) bound obtained by taking into account the partial information on Z is
more accurate than the bounds proposed in [15]. In the following section we
propose how to compute element-wise lower and upper bounds for Z.

3 Element-Wise Bounds for Matrix Z

First let us define the following binary relation on positive real vectors:

Definition 2. Let x, y be two positive real vectors. Vector y supports x if there
exist α > 0 and γ ≥ 0 such that α y �el x �el (α + γ) y.

Remark 3. Vector y supports vector x if and only if they have the same support
(the non zero elements have the same indices in both vectors). Note that if
vectors x and y are colinear we have γ = 0.

Property 2. Relation “supports” is reflexive, symmetric and transitive. Thus the
binary relation “supports” is an equivalence relation.

Stochastic Bounds for Partially Generated Markov Chains 233

Suppose that vector y �= 0 supports vector x and define αx,y and γx,y as follows:

αx,y = min
k : yk>0

xk

yk
, γx,y = max

k : yk>0

xk

yk
− αx,y. (2)

Lemma 1. Constants αx,y and γx,y satisfy αx,y y �el x �el (αx,y + γx,y) y.
Furthermore, αx,y = 1

αy,x+γy,x
and γx,y = 1

αy,x
− αx,y.

Proof. Follows directly from (2). Note that if vector y supports vector x then
αx,y > 0. By symmetry of relation “supports”, we also have αy,x > 0. ��

3.1 Main Idea

We introduce here the main idea behind the algorithms for element-wise bounds
for matrix Z on a very simple case. The following assumptions will be relaxed
in Sect. 4.

Assumption 1. We assume in this section that all columns of Q∗A are in the
same class of equivalence for relation “supports” or are null. Furthermore, we
suppose that there is at least one non null column.

In the following, let us note by Ci(M) the i-th column of a matrix M . Let v be
any vector that belongs to the same equivalence class as the non null columns
of matrix Q∗A. Thus, for all i, Ci(Q∗A) supports v or Ci(Q∗A) = 0.

For non null columns denote by αi := αCi(Q∗A),v and γi := γCi(Q∗A),v. For
columns i such that Ci(Q∗A) = 0 we will define αi := 0 and γi := 0 to simplify
the formulas. Note that ||α||1 =

∑
i αi > 0 and ||γ||1 =

∑
i γi ≥ 0.

We will derive simple component-wise upper and lower bounds for columns
of matrix Z in Algorithm 2. We use the following trivial property:

Property 3. Ci(Z) = QA∗(I − Q∗∗)−1Ci(Q∗A).

Lemma 2. β
||α||1+||γ||1 �el QA∗(I − Q∗∗)−1v �el

β
||α||1 .

Proof. We have αjv �el Cj(Q∗A) �el (αj + γj)v, ∀j, which implies αjQA∗(I −
Q∗∗)−1v �el Cj(Z) �el (αj + γj)QA∗(I − Q∗∗)−1v. Now by summation for all
columns j we obtain ||α||1QA∗(I − Q∗∗)−1v �el β �el (||α||1 + ||γ||1)QA∗(I −
Q∗∗)−1v. ��

Lemma 3. Assume that vector v supports column i. Then:

β
αi

||α||1 + ||γ||1
�el Ci(Z) �el β

αi + γi

||α||1
.

Proof. By definition of constants αi and γi we have:

αiv �el Ci(Q∗A) �el (αi + γi)v.

By Property 3, αiQA∗(I − Q∗∗)−1v �el Ci(Z) �el (αi + γi)QA∗(I − Q∗∗)−1v,
which together with Lemma 2 gives the result. ��

234 A. Bušić and J.-M. Fourneau

Algorithm 2. Element wise upper (U) and lower (L) bounds for matrix Z

Input : β = e − QAAe; matrix Q∗A

Notation : m - right-most non null column of Q∗A

v = Cm(Q∗A);
α = 0; γ = 0;
foreach non null column j of Q∗A do

αj = mink : vk>0
Q∗A[k,j]

vk
; γj = maxk : vk>0

Q∗A[k,j]
vk

− αj ;

end
U = 1

||α||1 β(α + γ)t; L = 1
||α||1+||γ ||1 βαt;

Remark 4. We can use Algorithm 1 to obtain matrices M and M such that
r(M) �el r(M) �el r(M), ∀M ∈ ML,U,β. However, element-wise bounds L and
U given by Algorithm 2 are rank 1 matrices. Therefore, it is sufficient to compute
only two row vectors w and w, the maximal and minimal elements of the family
MU ′,L′,β′ for U ′ = 1

||α||1 (α+γ)t, L′ = 1
||α||1+||γ||1 αt and β′ = 1. Vectors w and

w can be computed by Algorithm 1 (as a special case of a matrix with only 1
row). Finally, matrices M and M are obtained as M = βw and M = βw.

Example 1. Let us consider a matrix Q∗A given as follows:

Q∗A =

⎡⎢⎢⎢⎢⎣
0.2 0.1 0.0 0.1
0.2 0.1 0.0 0.1
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.2 0.2 0.0 0.1

⎤⎥⎥⎥⎥⎦
All the columns are null or support column 4. αt = [2, 1, 0, 1] and γt = [0, 1, 0, 0].
Thus the upper bound is (α + γ)/4 and the lower bound is α/5. The st-upper
bound is w = [0.4, 0.35, 0, 0.25] and the st-lower bound is w = [0.5, 0.3, 0, 0.2].
It is interesting to remark that DPY [4] gives the same st-upper bound for this
example.

Corollary 1. If Q∗A is of rank 1, then Algorithm 2 gives the exact result.

Proof. If Q∗A is of rank 1, then γi = 0, ∀i, so in Algorithm 2, U = L = Z. ��

4 Finding Bounds Using Incomplete Information

In this section we present different algorithms based on complete or partial infor-
mation on the block Q∗A. Also, we consider here the general case where we can
have more than one equivalence class (i.e. when Assumption 1 is not satisfied).
In Algorithm 3 we assume less restrictive assumptions and in Algorithm 4 we
iterate an approach based on Algorithm 3. In Algorithm 5 we apply Algorithm 2
on groups of columns.

Stochastic Bounds for Partially Generated Markov Chains 235

These algorithms apply even if we do not know all the columns of matrix Q∗A.
It is still possible to obtain in this case an element-wise and an st-upper bound.
Lower bounds are much harder to obtain and only some methods will provide
lower bounds under stronger assumptions. Finally, in the last two approaches
we assume that the sum of the columns of Q∗A is known while some columns
are unknown. Indeed, for some modeling frameworks it is possible to compute
easily the sum of probabilities of a set of events even if the exact transitions are
unknown.

Note that it may be possible to use more than one method for some problems
and we can combine them to improve the accuracy using a very simple argument:

Lemma 4. Let βλt
1 and βλt

2 be two element-wise upper bounds. Then β(min{λ1,
λ2})t is a more accurate upper bound (the min operator is element-wise).

Finally, the preprocessing step of each algorithm is to compute β = e − QAAe.

4.1 Less Constrained Matrices

Denote by m the right-most non null column of Q∗A and let vm = Cm(Q∗A).

Assumption 2. We assume that some columns (not all of them) of Q∗A support
vm. We can decompose Q∗A as follows:

Ci(Q∗A) = αivm + Wi, (3)

with 0 �el Wi and αi ≥ 0. This decomposition is always possible. If column
Ci(Q∗A) supports column vm we get αi > 0 as usual, otherwise we may have
αi = 0 or a positive αi if we are lucky. So we decompose Q∗A into a rank 1 matrix
and a positive matrix W whose columns are Wi. The stochastic complement is:

QAA + QA∗(I − Q∗∗)−1vmαt + QA∗(I − Q∗∗)−1W.

Let Z1 = QA∗(I − Q∗∗)−1vmαt and Z2 = QA∗(I − Q∗∗)−1W . Z1 and Z2 are
positive matrices.

Some results obtained in the last section for more constrained matrices are still
true.

Lemma 5. Cm(Z) �el β 1
||α||1

Proof. The decomposition implies that: QA∗(I − Q∗∗)−1vm||α||1 �el β. In the
decomposition Wm = 0. Thus: Cm(Z) = QA∗(I − Q∗∗)−1vm. Combining both
relations, we get the result. ��

It is also possible to find an upper bound for all the columns which support
column m.

Lemma 6. Assume that column i supports column m. Then Ci(Z) �el β αi+γi

||α||1 .
But when the column does not support vm, the upper bound is β.

236 A. Bušić and J.-M. Fourneau

Proof. From Lemma 5, we get Cm(Z) �el β 1
||α||1 , and if column i supports

column m we have Ci(Z) �el Cm(Z)(αi + γi). Combining both inequalities we
get the first result. Finally it is sufficient to remark that Ci(Z) �el β. ��

We introduce two operators, q (quotient) and R (reminder) defined as follows.
Let x and y �= 0 be two positive vectors:

q(x, y) = min
k:yk>0

{
xk

yk

}
, R(x, y) = x − q(x, y)y. (4)

Algorithm 3. Upper bounds for Z when Assumption 1 is not satisfied
1. Consider the right-most non null column of Q∗A, say vm. Set αm = 1, γm = 0

and αi = 0 for all index i > m.
2. For all columns i between 1 to m check if it supports vm:

(a) If YES compute αi and γi.
(b) If NO perform the decomposition described in (3) to obtain αi:

αi = q(Ci(Q∗A), Cm(Q∗A)) and W = R(Ci(Q∗A), Cm(Q∗A)).
3. The upper bound is 1

||α||1
β(αi + γi)

t for columns i which support vm, 0 for
the null columns and β for the remaining ones.

Remark 5. All the columns where αi > 0 are used to bound column m. αi is
positive when column i supports column m but this is not necessary. For instance
[1, 1, 1]t does not support [1, 1, 0]t but we obtain αi = 1. Note however we are
only able to obtain a non trivial bound for columns which support column m.

Theorem 3. Algorithm 3 provides an upper bound when we know all columns
of Q∗A. If some columns of Q∗A are unknown, Algorithm 3 provides an upper
bound based on known columns. The upper bound for unknown columns is β.

Proof. Lemmas 5 and 6 give the answer for known columns. Unknown columns
i do not support the column m (the last known non null column) so the corre-
sponding αi = 0. ��

The following lemma gives a bound of all the colinear columns (it is a simple
consequence of Lemma 3).

Lemma 7. Let i be the index of a column of Q∗A which is colinear to vm, then
we have Ci(Z) �el β αi

||α||1

Proof. For a column i colinear to column m, we have γi = 0. ��

4.2 Iteration

We decompose the columns according to their equivalence class and we perform
a modified version of Algorithm 3 on each class. Then an upper bound for Z
can be obtained by taking element-wise minimum of upper bounds obtained for
each equivalence class (see Lemma 4).

Stochastic Bounds for Partially Generated Markov Chains 237

Algorithm 4. Iteration
1. Decompose the columns of Q∗A according to the equivalence relation “support”.
2. Upper bounds for columns which are equal to 0 are equal to 0.
3. For all (non null) equivalence classes:

(a) Let ∆ be the set of index of the columns that belong to that class.
(b) Let v be the right-most non null vector in ∆.
(c) For all i, αi = q(Ci(Q∗A), v). (Note that for i ∈ ∆, αi = αCi(Q∗A),v .)
(d) For all i ∈ ∆, compute γi = γCi(Q∗A),v .
(e) Compute α =

�
i αi.

(f) The upper bound for column i ∈ ∆ is β αi+γi
α

.

Theorem 4. When all columns of Q∗A are known, Algorithm 4 provides an
upper bound. Assume now that some columns of Q∗A are unknown, Algorithm
4 provides an upper bound based on known columns. The upper bound for un-
known columns is β. (Note that Algorithm 4 gives always better bounds than
Algorithm 3.)

Proof. The proof is similar to the proof of Algorithm 3. It is omitted here for
the sake of conciseness. ��

4.3 Partial Summations

Assumption 3. Without loss of generality we assume that Cn(Q∗A) �= 0. The
main assumption is the following: we can find a partition of {1, . . . , n} into
k subsets Γ1, . . . , Γk such that for all set index j,

∑
i∈Γj

Ci(Q∗A) supports
Cn(Q∗A). Without loss of generality we assume that Γk = {n}. Let us denote
by αj and γj the coefficient of the support relation for set Γj. Clearly we have:
αk = 1 and γk = 0.

Algorithm 5 consists in building a new matrix where the columns are summed
up for all index in the same subset in the partition. This new matrix satisfies
the assumptions of Algorithm 2.

Algorithm 5. Partial summations
1. Find a partition satisfying the constraints.
2. Sum up the columns of Q∗A according to the partition to obtain a new matrix

with k columns.
3. Apply Algorithm 2 on this matrix to obtain some αj and γj for all set index j.

4. The element-wise upper bound for an arbitrary column i is β
αj+γj

||α||1 where j in
the index of the set which contains i.

5. The st-upper bound for an arbitrary column i is β
αj+γj

||α||1
if i is the largest

element of set Γj and 0 otherwise.

238 A. Bušić and J.-M. Fourneau

Theorem 5. Algorithm 5 provides an upper bound when all columns are known.
Assume now that some columns of Q∗A are unknown, Algorithm 5 provides an
upper bound based on the known columns. The upper bound for the unknown
column is β.

Proof. Step 3 and the bound computed for the sum are exactly the same as
in Algorithm 2 and we can apply the results we have already proved. Thus∑

i∈Γj
Ci(Z) �el β

αj+γj

||α||1 . Step 4 simply states that each element has the same
upper bound than the sum. In Step 5 the st-bound is computed from the element-
wise upper bound with Algorithm 1. ��

4.4 If the Sum of Columns is Known

Assumption 4. We assume that
∑n

i=1 Ci(Q∗A) = σ is known. Only some
columns are known. For all the known columns (say with index i) that are not
equal to 0, we use operators q and R in (4) to get σ = qiCi(Q∗A) + Wi, where
Wi is non negative.

Note that it is not necessary to know matrix Q∗A to compute σ, it can be
obtained from a high-level specification of the model.

Lemma 8. As all the columns are non negative (even if they are unknown. . .)
we clearly have qi ≥ 1.

Theorem 6. Consider σ and an arbitrary column index k. Use operators q and
R in (4) with input arguments σ and Ck(Q∗A) to obtain qk and Wk. Ck(Z) is
element-wise upper bounded by β

qk
.

Proof. We clearly have:

β =
∑

i

Ci(Z) = QA∗(I − Q∗∗)−1
∑

i

Ci(Q∗A) = QA∗(I − Q∗∗)−1σ. (5)

As σ = qkCk(Q∗A) + Wk, and as Wk, QA∗, and (I − Q∗∗)−1 are non negative,
we get: QA∗(I − Q∗∗)−1Ck(Q∗A) �el

β
qk

. As QA∗(I − Q∗∗)−1Ck(Q∗A) = Ck(Z)
we prove the theorem. ��

It is even possible to find a bound if we are not able to compute exactly σ.
Assume that we are able to compute δ such that δ �el σ. This is typically the
case when we have a high level description of the chain and we are able to classify
the transitions according to their destination set.

Theorem 7. Consider δ and an arbitrary column index k. Use operators q and
R in (4) with parameters δ and Ck(Q∗A) to obtain q′k and W ′

k. If q′k ≥ 1, column
k of Z is element-wise upper bounded by β

q′
k

.

Proof. As δ �el σ, we have q′k ≤ qk and we apply the former theorem. ��

Stochastic Bounds for Partially Generated Markov Chains 239

4.5 Examples

We illustrate algorithms proposed in this section on small numerical examples.
Algorithm 3. Let

QAA =

⎡⎢⎢⎣
0.1 0.3 0.2 0.1
0.1 0.4 0.2 0.0
0.2 0.1 0.5 0.2
0.2 0.0 0.4 0.0

⎤⎥⎥⎦ β =

⎡⎢⎢⎣
0.3
0.3
0.0
0.4

⎤⎥⎥⎦ Q∗A =

⎡⎢⎢⎢⎢⎢⎢⎣
0.1 0.0 0.1 0.2
0.0 0.1 0.0 0.0
0.2 0.2 0.1 0.1
0.0 0.0 0.0 0.0
0.0 0.1 0.0 0.0
0.1 0.1 0.1 0.1

⎤⎥⎥⎥⎥⎥⎥⎦
Let us consider the columns of Q∗A. Clearly, column 3 supports column 4

and α3 = 0.5, γ3 = 0.5. Column 2 does not support column 4 and α2 in the
decomposition is 0. Finally column 1 supports column 4 and α1 = 0.5 γi = 1.5.
So ||α||1 = 2. We find upper bounds for columns 1, 3 and 4 which are respectively
2β/2, β/2 and β/2. The upper bound for Z is thus β[1, 1, 1/2, 1/2]. A strong
stochastic bound for Z is β[0, 0, 1/2, 1/2] (see Remark 4). The bound provided
by DPY is β[0, 1/4, 1/4, 1/2], so DPY is better for this example.

Now assume that we are not able to compute column 2.

Q∗A =

⎡⎢⎢⎢⎢⎢⎢⎣
0.1 ∗ 0.1 0.2
0.0 ∗ 0.0 0.0
0.2 ∗ 0.1 0.1
0.0 ∗ 0.0 0.0
0.0 ∗ 0.0 0.0
0.1 ∗ 0.1 0.1

⎤⎥⎥⎥⎥⎥⎥⎦
where ∗ denotes that the value is unknown. We are not able to use DPY
because the matrix is unknown. But the st-bound with Algorithm 2 is still
β[0, 0, 1/2, 1/2].

Now assume that we are not able to compute columns 1 and 2. Again it is
not possible to use DPY. We still have a support for column 4 from column
3. But as α1 is unknown, ||α||1 = 1.5. The element-wise upper bound is now
β[1, 1, 2/3, 2/3] and the st-upper bound is β[0, 0, 1/3, 2/3].

Algorithm 4. Let

β =

⎡⎢⎢⎣
0.3
0.3
0.0
0.4

⎤⎥⎥⎦ Q∗A =

⎡⎢⎢⎢⎢⎢⎢⎣
0.4 0.1 0.1 0.2
0.0 0.1 0.1 0.0
0.2 0.15 0.1 0.1
0.0 0.0 0.0 0.0
0.0 0.1 0.1 0.0
0.2 0.1 0.1 0.1

⎤⎥⎥⎥⎥⎥⎥⎦ H14 =

⎡⎢⎢⎢⎢⎢⎢⎣
0.4 0.2
0.0 0.0
0.2 0.1
0.0 0.0
0.0 0.0
0.2 0.1

⎤⎥⎥⎥⎥⎥⎥⎦ H23 =

⎡⎢⎢⎢⎢⎢⎢⎣
0.1 0.1
0.1 0.1
0.15 0.1
0.0 0.0
0.1 0.1
0.1 0.1

⎤⎥⎥⎥⎥⎥⎥⎦
We have two classes of equivalence in this example, corresponding to matrices
H14 (columns 1 and 4) and H23. For the first class (H14), v = C4(Q∗A) and
the values of αi are [2, 0.5, 0.5, 1], so α = 4. Since columns 1 and 4 are colinear,

240 A. Bušić and J.-M. Fourneau

γ1 = γ4 = 0. The corresponding upper bounds for columns 1 and 4 are: β/2 and
β/4. Thus the upper bound for Z for this class is β[1/2, 1, 1, 1/4]. For the second
class (H23), v = C3(Q∗A), the values of αi are [0, 1, 0, 1], α = 2, and γ2 = 0.5,
γ3 = 0. The corresponding upper bound for Z is β[1, 3/4, 1/2, 1]. The final upper
bound for Z is then β[1/2, 3/4, 1/2, 1/4] and the corresponding strong stochastic
bound is β[0, 1/4, 1/2, 1/4]. For the sake of comparison, the st bound provided
by DPY is β[0, 1/2, 1/4, 1/4].
Known sum. Let

β =

⎡⎢⎢⎣
0.3
0.3
0.0
0.4

⎤⎥⎥⎦ Q∗A =

⎡⎢⎢⎢⎢⎢⎢⎣
0.1 0.0 0.1 0.2
0.0 0.1 0.0 0.0
0.2 0.2 0.1 0.1
0.0 0.0 0.0 0.0
0.0 0.1 0.0 0.0
0.1 0.1 0.1 0.1

⎤⎥⎥⎥⎥⎥⎥⎦ σ =

⎡⎢⎢⎢⎢⎢⎢⎣
0.4
0.1
0.6
0.0
0.1
0.4

⎤⎥⎥⎥⎥⎥⎥⎦
Then we use operators q and R in (4) to obtain the ratios qi. Some values of
the rests Wi are omitted for the sake of conciseness. We have: q1 = 3, W t

1 =
[0.1, 0.1, 0, 0, 0.1, 0.1], q2 = 1, q3 = 4, and q4 = 2. And finally the bounding
matrix is β[1/3, 1, 1/4, 1/2] and the st bound is β[0, 1/4, 1/4, 1/2].

Assume now that we are not able to compute the second column of Q∗A. We
have: δt = [0.4, 0, 0.4, 0, 0, 0.3]. Then q1 = 2, W t

1 = [0.2, 0, 0, 0, 0, 0.1], q3 = 3 and
q4 = 2. As we cannot compute another bound for the second column, we keep
the simplest one (i.e. 1), so the element-wise bound is β[1/2, 1, 1/3, 1/2] and the
st bound is β[0, 1/6, 1/3, 1/2].

5 Concluding Remarks

In this paper we have presented several algorithms to obtain bounds of the tran-
sition probability matrix SAA of a CMC. These methods apply even if the initial
chain is infinite. The CMC is obtained after a partial generation of the state space.
More precisely, we only know QAA and some columns of Q∗A. When the whole
block Q∗A is known, it is possible to use both DPY and the algorithms presented
here. On many examples DPY and Algorithm 2 provide the same result for the
upper bound and lower bound. We have also proved that they give an exact re-
sult if matrix Q∗A has rank 1. Note however that in general Algorithm 2 requires
strong assumptions on the matrix and we have also found some matrices where the
bound is worse than the bound provided by DPY even if we have no proof that
DPY is always better. However, the aim of our algorithms is to find bounds of SAA

when Q∗A is only partially known or when Q∗A is infinite. In both cases we can-
not apply DPY. The algorithms presented here (except Algorithm 2) still apply
if some columns of matrix Q∗A are unknown. Thus they may be used even when
some part of the matrix (or the models) are difficult to compute. We do not have
comparison of results for these algorithms (except Algorithm 4 which is always
better than Algorithm 3). Indeed, they are not based on the same assumptions.
When several algorithms can be applied, the best solution is to use all of them and
combine the element-wise upper bounds.

Stochastic Bounds for Partially Generated Markov Chains 241

Acknowledgments. This work was partially supported by ANR-05-BLAN-
0009-02 SMS and ANR-06-SETIN-002 Checkbound.

References

1. Busic, A., Fourneau, J.-M.: Bounds for point and steady-state availability: An
algorithmic approach based on lumpability and stochastic ordering. In: Bravetti,
M., Kloul, L., Zavattaro, G. (eds.) EPEW/WS-EM 2005. LNCS, vol. 3670, pp.
94–108. Springer, Heidelberg (2005)

2. Busic, A., Fourneau, J.-M., Pekergin, N.: Worst case analysis of batch arrivals with
the increasing convex ordering. In: Horváth, A., Telek, M. (eds.) EPEW 2006.
LNCS, vol. 4054, pp. 196–210. Springer, Heidelberg (2006)

3. Dayar, T., Fourneau, J.-M., Pekergin, N.: Transforming stochastic matrices for
stochastic comparison with the st-order. RAIRO-RO 37, 85–97 (2003)

4. Dayar, T., Pekergin, N., Younes, S.: Conditional steady-state bounds for a subset
of states in Markov chains. In: SMCtools 2006. ACM Press, New York (2006)

5. de Souza e Silva, E., Ochoa, P.M., Mejiá Ochoa, P.: State space exploration in
Markov models. ACM SIGMETRICS Perform. Eval. Rev. 20(1), 152–166 (1992)

6. Fourneau, J.-M., Lecoz, M., Quessette, F.: Algorithms for an irreducible and
lumpable strong stochastic bound. Linear Algebra and its Applications 386(1),
167–185 (2004)

7. Fourneau, J.-M., Pekergin, N.: An algorithmic approach to stochastic bounds. In:
Calzarossa, M.C., Tucci, S. (eds.) Performance 2002. LNCS, vol. 2459, pp. 64–88.
Springer, Heidelberg (2002)

8. Fourneau, J.-M., Pekergin, N., Younes, S.: Censoring Markov chains and stochastic
bounds. In: Wolter, K. (ed.) EPEW 2007. LNCS, vol. 4748, pp. 213–227. Springer,
Heidelberg (2007)

9. Fourneau, J.-M., Plateau, B., Sbeity, I., Stewart, W.J.: SANs and lumpable sto-
chastic bounds: Bounding availability. In: Computer System, Network Performance
and Quality of Service, Imperial College Press (2006)

10. Haddad, S., Moreaux, P.: Sub-stochastic matrix analysis for bounds computation
- theoretical results. Eur. Jour. of Op. Res. 176(2), 999–1015 (2007)

11. Meyer, C.D.: Stochastic complementation, uncoupling Markov chains and the the-
ory of nearly reducible systems. SIAM Review 31(2), 240–272 (1989)

12. Muller, A., Stoyan, D.: Comparison Methods for Stochastic Models and Risks.
Wiley, New York (2002)

13. Pekergin, N., Dayar, T., Alparslan, D.: Compenent-wise bounds for nearly com-
pletely decomposable Markov chains using stochastic comparison and reordering.
Eur. Jour. of Op. Res. 165, 810–825 (2005)

14. Plateau, B., Fourneau, J.M., Lee, K.H.: PEPS: a package for solving complex
Markov models of parallel systems. In: Proceedings of the 4th Int. Conf. on Mod-
elling Techniques and Tools for Computer Performance Evaluation, Spain (1988)

15. Truffet, L.: Near complete decomposability: Bounding the error by a stochastic
comparison method. Ad. in App. Prob. 29, 830–855 (1997)

16. Truffet, L.: Reduction technique for discrete time Markov chains on totally ordered
state space using stochastic comparisons. Jour. of App. Prob. 37(3), 795–806 (2000)

17. Zhao, Y.Q., Liu, D.: The censored Markov chain and the best augmentation. Jour.
of App. Prob. 33, 623–629 (1996)

Evaluation of P2P Algorithms for Probabilistic

Trust Inference in a Web of Trust

Huqiu Zhang and Aad van Moorsel�

School of Computing Science
Newcastle University

Newcastle upon Tyne, UK
{huqiu.zhang, aad.vanmoorsel}@newcastle.ac.uk

Abstract. The problem of finding trust paths and estimating the trust
one can place in a partner arises in various application areas, including
virtual organisations, authentication systems and reputation systems.
We study the use of peer-to-peer algorithms for finding trust paths and
probabilistically assessing trust values in systems where trust is organised
similar to the ‘web of trust’. We do this through discrete event simula-
tion of random as well as scale free trust networks based on flooding as
well as selective search algorithms. Our main conclusion is that in many
situations these algorithms can be seen as belonging to a single class of
algorithms that perform equally, and only differ through (and are sen-
sitive to) parameter choices. We will also see that flooding is the only
applicable method if one stresses the requirement for finding all trust
paths, and if networks are less connected.

Keywords: Peer-to-Peer, Web of Trust, Trust Paths, Trust Inference.

1 Introduction

To motivate our study, consider a possibly large number of people or businesses
that want to collaborate, and not all players know each other. Internet and B2B
technologies promise a world in which such collaborations can be created almost
instantly (called virtual organisations). One of the challenges in creating such
dynamic business interactions is the establishment of trust, and assume there-
fore that each party maintains a list of trusted parties, including a probability
quantifying the amount of trust place in a party. In that situation, parties may
decide to trust each other and initiate business if a path of trust relations ex-
ists between them (in both directions), and they may calculate risks and decide
about their actions depending on the trust values associated with these paths.
In this paper, therefore, we analyse how peer-to-peer algorithms perform when
applied to finding trust paths and calculating trust values.

� The authors are supported in part by: EU coordination action 216295 (‘AMBER:
Assessing, Measuring, and Benchmarking Resilience’) and UK Department of Trade
and Industry, grant nr. P0007E (‘Trust Economics’).

N. Thomas and C. Juiz (Eds.): EPEW 2008, LNCS 5261, pp. 242–256, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Evaluation of P2P Algorithms for Probabilistic Trust Inference 243

Our trust model views the system as Web of Trust, a network or graph where
nodes are linked if they have a trust relation. We assume links are directed,
that is, a link or arc from A to B implies that A trusts B, but not B does not
necessarily trust A. The problem we address is if, for a given pair of request
node and target node, a trust path exists in the trust network. We associate a
probability with each link to represent the trust value associated to the trust
relation (either specified by the requester or by the trusting party associated with
an arc). The overall trust value of a trust path is the product of the probabilities
on the links. Moreover, when multiple trust paths exist between requester and
target, the problem of computing the overall trust value translates to the network
reliability problem, as pointed out in [1].

Given the above trust model, we are interested in evaluating how peer-to-peer
algorithms perform when used for identifying trust paths. We quantify their
performance by comparing the overhead (in number of messages used) with
the achieved success rate (in fraction of paths found). We then also compare
the achieved trust value with to the trust value obtained if all trust paths are
considered. In all steps of this study we use Monte Carlo and discrete-event
simulation: for generating the networks, executing the peer-to-peer algorithms,
and sampling the resulting paths to obtain the trust value. This paper builds on
our earlier work in the same area [2], but that work was limited to the question
if at least one trust path could be found, thus not including the overall success
rates, nor introducing trust values and trust value computation.

The network we consider is an unstructured peer-to-peer network for which
we consider flooding and selective algorithms. Perhaps surprising (since it con-
tradicts a possible tendency to think that flooding is expensive), our results show
that these algorithms are largely equivalent when considering the overhead ver-
sus the success rate, provided one sets the configuration parameters optimally.
This holds true if the fraction of trust paths one wants to find is not too high.
However, if a high success rate is required, flooding becomes superior, simply
because it covers more paths. Selective algorithms do not find all trust paths,
and the resulting computed trust value is therefore lower than for pure flooding.

Several reputation-based trust systems for peer-to-peer system have been
proposed in the literature, such as CORE [3], EigenTrust [4], TrustGuard [5],
Scrivener [6], P2PRep [7], Credence [8]. In [9], the authors present an analysis
framework for reputation systems, classify the known and potential attacks and
describe defense strategies. Our work differs from existing research, in that we
do not consider attacks, but discuss the performance of P2P algorithms for trust
inference. Moreover, compared with existing research on performance evaluation
of P2P algorithms (e.g. [10]), our work differs by considering trust values and
multiple paths to the target.

The rest of the paper is organized as follows. Section 2 provides a overview
of the problems and analysis and explore the potential solutions. The analytical
search algorithm technique are presented in Section 3. Numerical experiments
are detailed in Section 4. The performance and cost comparison among various

244 H. Zhang and A. van Moorsel

P2P algorithms to obtain probabilistic trust inference in Section 5. Section 6
concludes the paper and presents some possible direction for further study.

2 Problem Definition

2.1 Trust Path Discovery Problem

In abstract terms, one can model a web of trust as a directed graph G = (V, E),
in which the set of vertices V represent the nodes and the set of directed edges E
represent trust relations. A directed edge from i to j corresponds to i’s trust in
j. In terms of this trust relation, i is the truster [11], and j is the trustee [11]. As
an example, in the PGP trust model [1], vertices are public keys and edges are
certificates. A directed edge from i to j represents i signing a certificate which
binds j to a key.

Assume trust relations exist between some of the nodes of a network, and
based on direct interactions between them, direct trust [12] is created. But since
not all nodes of a network have direct interactions, direct trust links do not exist
between all pairs. Nodes without direct interactions, however, can estimate trust
depending on its trustees and so on. For instance, as in [2], assume there is no
directed edge from A to C, A can still trust C if there exists at least one path
from A to C in the graph. That is, it is accepted that trust is transitive in the
trust model: if A trusts B, and B trusts C, then A trusts C. The trust A places
on C is viewed as indirect trust [12], which is derived from the beliefs of others.
As pointed out in [12], trust relations usually are one-way: A trusts B does not
mean B trusts A.

In our model, every node maintains its trust relations associated with other
nodes. If a node (called the requester) wants to establish the trustworthiness of
another node (called the target) with which he has had no direct interactions
before, the trust path discovery problem is to find one or more trust path to the
target. In [2], the authors indicate that P2P search algorithms can be applied
to discover trust paths, due to the similarity of the structure of a web of trust
network and an unstructured P2P network. In what follows, the process of finding
trust paths is called a search phase. After the search phase, and if such trust
path exists, the requester requires some mathematical method to estimate the
trustworthiness of the target. How to develop a reasonable trust measure is
presented in the following subsection. On the other hand, if no such trust path
exists, the trustworthiness of a target cannot be established from the requester’s
point of view.

2.2 Trust Inference Problem

How to define a reasonable trust metric to estimate the trust placed on the
target? Our work follows the approach in [1], which shows that the trust inference
problem can be translated into the two-terminal network reliability problem.

Network reliability concerns the performance study of computer networks, in
which components are subject to random failures. In network reliability analysis,

Evaluation of P2P Algorithms for Probabilistic Trust Inference 245

it is assumed that edges have probabilities of failure [13]. That is, at a particular
time, an edge can take one of the two states, operative or failed. The two-
terminal network reliability is computed as a probability of establishing at least
one operating network path from s to t. Mapping the (s, t) network reliability
problem to web of trust context, requester-target trust inference is viewed as
determining the probability of establishing at least one trust path from the
requester to the target.

To solve the network reliability problem, exact methods and approximate
methods have been developed. In general, exact methods first calculate mini-
mal operating states, path sets or cut sets, and then apply inclusion-exclusion
principle to compute the result [13]. However, exact methods suffer from an ex-
ponential worst-case complicity [13]. That is caused by the computation of path
sets or cut sets, which is an NP-hard problem [13]. A Monte-Carlo technique be-
longing to approximate methods is commonly proposed and employed in network
reliability computation [14]. This method is implemented in our experiments to
compute the trust value.

3 Methodology

3.1 Topologies

The topology of a P2P network may influence the effectiveness of various search
algorithms. We focus on two network topologies in our study: random graph and
scale-free graph. Both are generated by the approaches provided by Peersim [15].

Random Graph. Given the network size S (the number of nodes) and an
integer value d, PeerSim generates randomly d directed links out of each node.
The neighbours are chosen randomly without replacement from the nodes of the
network except the source node. We modified the basic algorithm in Peersim so
that the out-degree follows a truncated standard normal distribution around d.

Scale-free Graph. Given the network (S, d and network seed), Peersim pro-
vides the Barabasi-Albert approach [16] to generate a directed graph with a
power law in-degree distribution and for each node the out-degree value zero
or d. We modified the generation of outgoing links to follow a more reasonable
distribution, namely a standard normal distribution around d. A power law in-
degree distribution reflects that most of the nodes can be trusted by a few nodes
and a few nodes can be trusted by most of the nodes, which can be said to match
our experience in the real world.

3.2 P2P Search Algorithms

The trust path discovery algorithms considered in this paper all are variations of
flooding in unstructured P2P networks. More specifically, theyare controlled flood-
ing algorithms. For these approaches in the context of file sharing, we refer to [10].

Flooding. “Pure” Flooding has been mainly used in Gnutella networks [17]. In
this approach, a requester sends query messages to every node to which it directly

246 H. Zhang and A. van Moorsel

connects. Receiving a query message, if a node does not find information being
searched, it will forward this query message to all of its connected neighbour
nodes. To avoid unlimitedly propagating messages, every query message is fixed
with a time-to-live (TTL) parameter, which takes a positive integer value. Each
time the query is forwarded by a node, the TTL value is decremented by 1. When
the TTL value reaches zero, the query message will stop to be forwarded. We
will see later that setting the TTL value is a critical aspect for the performance
of the algorithm.

Random querying. In comparsion with Flooding, in Random querying, a re-
quester sends query messages to a subset of its neighbour nodes, which is set
to K percent of its neighbour nodes rounded below or rounded above. Upon
receiving the incoming query, a node then continues forwarding the messages to
its K percent randomly selected neighbour nodes. This method also relies on
TTL parameter to limit the search.

Selective querying. Rather than forwarding incoming queries to randomly
chosen neighbours, the Selective querying approach [18] intelligently selects a
subset of neighbours according to some specific criterion, for instance, the latency
of connection, number of results for past queries, location and message queue
capacity, etc. In the trust path searching, best neighbours are nodes with the
most trust relations.

3.3 Metrics

To measure the efficiency of these algorithms, we considered three aspects re-
flecting the fundamental characteristics of the algorithms.

Success rate: the fractionof forwhichanalgorithmsuccessfully locates the target.

Number of messages: overhead of an algorithm is measured as the total num-
ber of search messages passed over the network during the search.

Trust inference value: A probability within a range [0, 1], where 0 denotes
no trust, and 1 denotes full trust. If no trust path exists, the trust value is 0,
otherwise, the probabilistic trust value is computed as the solution of the network
reliability problem as discussed in Section 4.3.

4 Simulation Methodology

In this section, we explain details of our simulations.

4.1 Peersim

We use PeerSim for our simulations. PeerSim is a Peer-to-Peer simulation frame-
work, which is implemented in JAVA. It can be used to model any kind of P2P
search algorithms. PeerSim simulator consists of several different components
which can be easily plugged together by using an ASCII configuration file. It

Evaluation of P2P Algorithms for Probabilistic Trust Inference 247

can work in two different modes: cycle-based or event-based. The cycle-based
engine is a sequential simulation, in each cycle every node executes its own pro-
tocol’s actions in a global sequential order. In the event-based mode, events are
scheduled in different simulation time and nodes execute protocols according to
message delivery times [15]. A very detailed account of performance and scala-
bility comparison between these two modes is studied in [19]. As recommended
in [19], cycle-based mode of the PeerSim simulator is used in our study.

4.2 Sampling Method

As a network topology consists of an infinite number of possible network in-
stances, it is impossible to survey all its members to obtain the characteristics of
a network topology. But a small cautiously chosen sample can be used to achieve
the same aim.

In sampling technologies [20], the term population denotes the complete set of
observations that one wants information about, while the term sample stands for
a subset of the population that we actually examine. In an experiment, a sample
is selected from the population and statistic is collected from experimental sam-
ples in order to draw the conclusion about some properties of the population. In
our simulation, a particular network topology (e.g. random network) is viewed
as a population.

To simulate P2P search algorithms, the process of obtaining a sample is as
follows: at first draw particular networks; then, within networks, select search
queries (requester-target pairs). This way of selecting sample is called the Sub-
sampling approach [20]. Sample selection is done in two steps: first select a
sample of units from the population, named the primary units, and for each
chosen primary unit, a sample of subunits are selected.

In the experiment, a particular network structure related to a specific network
is viewed as a primary unit; one specific query inside is treated as a subunit.
We use the symbol N to denote the population size, then a network topology
consists of N primary units. Within a particular network (size S), if every node
looks up all the other nodes, there will be a total of S(S − 1) query subunits
constituting a particular network unit.

The following notation is used for obtaining estimate sample means and vari-
ances in Subsampling [20]:

n : number of primary unit samples
N : the total number of primary units
m : number of subunit samples per unit
M : the total number of subunits
yi,j : value obtained for the jth subunit in the ith primary unit

ȳi = 1
m

∑m
j=1 yi,j = sample mean per subunit in the ith primary unit

¯̄y = 1
n

∑n
i=1 ȳi = over-all sample mean per subunit

248 H. Zhang and A. van Moorsel

f1 = n
N = ratio of the size of the sample to the total of the primary units

f2 = m
M = ratio of the size of the sample to the total of the subunits

s2
1 =

�n
i=1(ȳi−¯̄y)2

n−1 = variance among primary unit means

s2
2 =

�n
i=1
�m

j=1(yi,j−ȳi)
2

n(m−1) = variance among subunits within primary units

v(¯̄y) = 1−f1
n s2

1 + f1(1−f2)
mn s2

2 = sampling variance

In sampling, sampling variance can be calculated to show the degree to which
a sample may differ from the population. As the total number of members in
the population N is infinite in our experiments, f1 = n

N is negligible, and then
we obtain that the estimated variance can be computed as:

v(¯̄y) =
s2
1

n
=

∑n
i=1(ȳi − ¯̄y)2

n(n − 1)
,

and the estimated sample standard deviation is s(¯̄y) =
√

v(¯̄y).
Given the estimated sample mean and sample standard deviation, if tc is the

t value associated with c%, then a c% confidence interval for the mean is equal
to y ± tcs(ȳ). For instance, if the desired confidence probability is 95%, the tc
value is 1.96. Then we say that a 95% chance that the population mean is within
a range of [ȳ − tcs(ȳ), ȳ + tcs(ȳ)].

Statistics are collected from the n (number of primary unit samples) × m (num-
ber of subunit samples) queries. For the result we present in the paper, n=50 and
m=50, which turns out to ensure small standard deviation in our results.

4.3 Trust Computation

As explained in Section 2.2, in our experiments, we implement the Monte-Carlo
method. The Monte-Carlo method is a computation which performs statistical
sampling to obtain the result [14]. As a consequence, the trust computation
effictively becomes ’three-level-unit’ samples. The primary units are the drawn
particular networks, the secondary units are chosen random queries, and finally
the tertiary units are generated trust graph samples. As a consequence, trust
mean is:

¯̄̄y =
1
n

n∑
i=1

{ 1
m

m∑
j=1

(
1
l

l∑
k=1

yi,j,k)}.

For simplify, it is assumed that each edge has the same trust reliable value. In
the experiment, the value was set to 0.8. Experiment results and discussions on
interesting finding are presented in the following section.

5 Results

In this section, we start with the overview of the network topologies generated
by the simulator, and then discuss performance results in random and scale-free

Evaluation of P2P Algorithms for Probabilistic Trust Inference 249

networks, respectively. We assume that the trust network graph does not change
during the simulation of the algorithms. Effectively, this implies that the time
to complete a search enough so that no nodes leave or enter the network.

Parameters Values. Our simulations were carried out in a network of size
S=10000. P2P search algorithms applications are tested on two types of net-
work topology: random and scale-free topology. In the random networks, the
average out-degree value is 5. The scale-free networks are drawn with three dif-
ferent average out-degree values (5, 10, 20). For Random and Selective querying
algorithms, we chose three different values (10%, 50%, 70%) for the fraction of
neighbours to which each query will be forwarded.

Network Characteristics. Before discussing the algorithm performance, we
have a look at the networks on which the simulations perform. Figure 1 shows
the distributions of links per node for random and scale-free networks (average
out-degree=5). As we see from Figure 1(a), in scale-free network, the incoming
links of each node follow a power law distribution. One can be interested in
how the nodes link to each other. If there is at least one path leading to node
j from node i, then we say this node pair <i,j> is connected. We use the term
node pair connection ratio (connection ratio for short) to present the fraction
of node pairs being connected in a network. The node pair connection ratio is
strongly influenced by network topology and the average out-degree value, which
can be seen from Table 1. The query samples are the secondary units, and the
network samples are the primary units. In the random networks, both in the
query samples and network samples, the node pair connection ratio is over 99%,
which implies nearly every node is connected to all the others. On the other
hand, in the scale-free networks, the connection ratio is much smaller, although
it increases with the average out-degree value. The reason why the connection
ratio is smaller is that the number of nodes with zero in-degree value is large
(see Figure 1(a)). That means many nodes are not reachable from other nodes,
resulting in a low success rate. To obtain a higher success rate, we look at more
possible higher connection ratios by given higher out-degree values. For random
networks, the connection ratio is satisfactory. It can also be seen from Table 1,
that the connection ratio in the query samples is similar to that in the network
samples, which means the query samples basically reflect the feature of the node
pair connection in the network samples.

Table 1. Node pair connection ratio in random and scale-free networks

Topology Average Node Pair Connection Ratio
out-degree query samples network samples

Random 5 99.28% 99.12%

Scale-free
5 3.72% 3.88%
10 13.12% 13.28%
20 24.84% 26.32%

250 H. Zhang and A. van Moorsel

 1

 10

 100

 1000

 10000

0 1 10 100 1000

nu
m

be
r

of
 n

od
es

number of incoming links

random network
scale-free network

(a) in-degree distribution

 1

 10

 100

 1000

 10000

 0 1 2 3 4 5 6 7 8

nu
m

be
r

of
 n

od
es

number of outgoing links

random network
scale-free network

(b) out-degree distribution

Fig. 1. Links distributions in random and scale-free networks (average out-degree=5)

5.1 Results in Random Networks

Figure 2 presents messages overhead and probability of success as TTL increases
in random network. The shown lines are in the order they appear in the graphs.
It can be observed that Flooding always has higher overhead and higher success
rate than all the others, for identical TTL values. Random querying (70%) and
Selective querying (70%) achieve similar success rate, quite a bit smaller than
flooding until TTL reaches 6. From TTL=7 onwards, both algorithms obtain
similar success rate close to that of Flooding.

 1

 10

 100

 1000

 10000

 100000

 2 3 4 5 6 7 8 9

nu
m

be
r

of
 m

es
sa

ge
s

TTL

flooding
selective=70%
random=70%

selective=50%
random=50%

selective=10%
random=10%

(a) message overhead under various TTLs

 0

 25

 50

 75

 100

 2 3 4 5 6 7 8 9

Pr
(s

uc
ce

ss
)

%

TTL

flooding
selective=70%
random=70%

selective=50%
random=50%

selective=10%
random=10%

(b) success probability under various TTLs

Fig. 2. Message overhead versus Pr(success) for different TTL values in random net-
work (lines are in the order they appear in the graphs)

The key insight gained from our study is given in Figure 3, which combines the
results of the two subfigures in Figure 2. It shows for each algorithm the message
overhead versus the success rate, and each curve consists of eight points, with the
results for TTL=2 until 9. It can be seen from Figure 3, that it does not matter if
one uses Flooding or Random querying/Selective querying. For any success rate,
the message overhead of the algorithms is similar. This implies that for a given

Evaluation of P2P Algorithms for Probabilistic Trust Inference 251

 1

 10

 100

 1000

 10000

 100000

 0 25 50 75 100

nu
m

be
r

of
 m

es
sa

ge
s

Pr(success) %

flooding
selective=70%
random=70%

selective=50%
random=50%

selective=10%
random=10%

Fig. 3. Message overhead versus success rate in random network

algorithm, if one knows the TTL value that achieves the desired success rate on
message overhead, this algorithm will be close to optimal. The problem is, of
course, that the correct TTL value is not known beforehand. Note furthermore
that Flooding achieves the highest success rate (as one would expect), but that
the Selective/Random algorithm is competitive if the percentage is set high
enough (70% in our case). For lower percentage, even very large TTL values
may not provide the success rate achievable with Flooding. This indicates a
second complication in Selective/Random querying: the percentage must be set,
and the optimal value is (like in the case of the TTL value) not known.

The exact trust value would be obtained if all trust paths would be considered.
As a consequence, all results in Table 2 are lower bounds for the trust value.
Since Flooding has the highest success probability, it is not surprising that it
also obtains the highest trust values. In particular, we see that the trust value
of random networks is at least 0.974. One also see from Table 2 that a TTL
value of at least 8 is needed for Selection/Random querying to give satisfactory
results, and that the percentage must be set to 70%.

Table 2. Probabilistic trust inference values in random networks

Algorithm
Trust Inference

TTL=6 TTL=7 TTL=8 TTL=9

Flooding 0.871 0.968 0.974 0.974

Random
10% 0.001 0.001 0.002 0.002
50% 0.025 0.043 0.078 0.156
70% 0.305 0.742 0.929 0.958

Selective
10% 0.002 0.002 0.002 0.002
50% 0.043 0.088 0.190 0.430
70% 0.432 0.845 0.940 0.957

252 H. Zhang and A. van Moorsel

5.2 Results in Scale-free Networks

We consider scale-free networks with three different average out-degree value (5,
10, 20).

Figures 4(a), 5(a), 6(a) show the number of messages propagated through
scale-free networks with different average out-degree values (5, 10, 20), for dif-
ferent values of TTL. Figures 4(b), 5(b), 6(b) present the success rate of searches.
The y-axis of these figures gives the success probability as well as a normalised
success probability between brackets. Since each algorithm finds only a subset
of all trust paths, the success probability of an algorithm is bounded by the per-
centage of node pairs in a network for which a trust path exists. That maximum
value is given on the y-axis with 100 between brackets. The percentage between
brackets is thus a normalised success probability. For instance, in Figure 4(b)
the success probability of the network is 4%, and the flooding algorithm finds
almost all existing trust paths for high values of TTL. The shown lines are in
the order they appear in the graphs. Similar to random networks, for each TTL
value Flooding has the highest overhead and highest success rate. As we can see

 1

 10

 100

 1000

 10000

 100000

 2 3 4 5 6 7 8 9

nu
m

be
r

of
 m

es
sa

ge
s

TTL

flooding
selective=70%
random=70%

selective=50%
random=50%

selective=10%
random=10%

(a) message overhead under various TTLs

0

1(25)

2(50)

3(75)

4(100)

 2 3 4 5 6 7 8 9

Pr
(s

uc
ce

ss
)

%

TTL

flooding
selective=70%
random=70%

selective=50%
random=50%
random=10%

selective=10%

(b) success probability under various TTLs

Fig. 4. Message overhead and Pr(success) for different TTL values in scale-free net-
work(average out-degree=5)

 1

 10

 100

 1000

 10000

 100000

 2 3 4 5 6 7 8 9

nu
m

be
r

of
 m

es
sa

ge
s

TTL

flooding
selective=70%
random=70%

selective=50%
random=50%

selective=10%
random=10%

(a) message overhead under various TTLs

0

3.5(25)

7(50)

10.5(75)

14(100)

 2 3 4 5 6 7 8 9

Pr
(s

uc
ce

ss
)

%

TTL

flooding
selective=70%
random=70%

selective=50%
random=50%

selective=10%
random=10%

(b) success probability under various TTLs

Fig. 5. Message overhead and Pr(success) for different TTL values in scale-free net-
work(average out-degree=10)

Evaluation of P2P Algorithms for Probabilistic Trust Inference 253

 1

 10

 100

 1000

 10000

 100000

 2 3 4 5 6 7 8 9

nu
m

be
r

of
 m

es
sa

ge
s

TTL

flooding
random=70%

selective=70%
random=50%

selective=50%
random=10%

selective=10%

(a) message overhead under various TTLs

0

6.75(25)

13.5(50)

20.25(75)

27(100)

 2 3 4 5 6 7 8 9

Pr
(s

uc
ce

ss
)

%

TTL

flooding
selective=70%
random=70%

selective=50%
random=50%

selective=10%
random=10%

(b) success probability under various TTLs

Fig. 6. Message overhead and Pr(success) for different TTL values in scale-free net-
work(average out-degree=20)

 1

 10

 100

 1000

 10000

 100000

0 1(25) 2(50) 3(75) 4(100)

nu
m

be
r

of
 m

es
sa

ge
s

Pr(success) %

selective=10%
random=10%
random=50%

selective=50%
selective=70%
random=70%

flooding

(a) average out-degree=5

 1

 10

 100

 1000

 10000

 100000

0 3.5(25) 7(50) 10.5(75) 14(100)

nu
m

be
r

of
 m

es
sa

ge
s

Pr(success) %

random=10%
selective=10%
random=50%

selective=50%
random=70%

selective=70%
flooding

(b) average out-degree=10

 1

 10

 100

 1000

 10000

 100000

0 6.75(25) 13.5(50) 20.25(75) 27(100)

nu
m

be
r

of
 m

es
sa

ge
s

Pr(success) %

random=10%
selective=10%
random=50%

selective=50%
random=70%

selective=70%
flooding

(c) average out-degree=20

Fig. 7. Message overhead versus success rate in scale-free networks

from figures 4(b), 5(b), 6(b), Selective querying achieves a little higher success
rate than Random querying with the same K percent value with some excep-
tions, for instance, in Figure 4(b), when TTL=2, 7, 8, 9 and K=70%. This may
be explained by targets with few incoming links, which will be ignored by the
Selective querying algorithm. As for random networks, we plotted success prob-

254 H. Zhang and A. van Moorsel

Table 3. Trust inference values for different algorithms in scale-free networks

Average
Algorithm

Trust Inference
Out-dgree TTL=6 TTL=7 TTL=8 TTL=9

5

Flooding 0.020 0.022 0.023 0.023

Random
10% 0.002 0.002 0.002 0.002
50% 0.004 0.004 0.005 0.005
70% 0.012 0.013 0.013 0.014

Selective
10% 0.001 0.001 0.001 0.001
50% 0.006 0.006 0.006 0.006
70% 0.013 0.014 0.014 0.014

10

Flooding 0.088 0.091 0.093 0.094

Random
10% 0.002 0.002 0.002 0.002
50% 0.034 0.036 0.036 0.036
70% 0.056 0.058 0.058 0.059

Selective
10% 0.003 0.003 0.003 0.003
50% 0.038 0.039 0.039 0.040
70% 0.061 0.064 0.065 0.066

20

Flooding 0.200 0.204 0.206 0.206

Random
10% 0.008 0.009 0.009 0.009
50% 0.103 0105 0.107 0.107
70% 0.145 0.153 0.154 0.155

Selective
10% 0.012 0.012 0.012 0.012
50% 0.110 0.113 0.114 0.114
70% 0.156 0.160 0.161 0.161

ability versus message overhead in Figures 7(a), 7(b), 7(c), we see that Flooding,
Random querying(70%) and Selective querying(70%) perform similarly, but im-
portantly Flooding can obtain a higher success rate. Arguably, the difference
between Flooding and other algorithms is even more pronounced in scale-free
networks than in random networks. Note again that in the Selective/Random
algorithms a high enough value for K (the percentage of selected nodes) must
be chosen to achieve a reasonable success rate.

Table 3 shows the computed trust values. As we can see, in scale-free networks,
the trust value is very low for all the search algorithms. This is caused by the low
node pair connection ratio of scale-free networks, see Table 1. With the increase of
the out-degree value, the node pair connection ratio increases and therefore, trust
increases. Flooding obtains the highest values, as can be expected, resulting in a
lower bound of the trust value of 0.023, 0.094 and 0.206 for the respective out-
degrees. Selective querying slightly outperforms Random querying, even for the
case of out-degree = 5, in which Random querying achieved higher success rate.

5.3 Discussion

For both network topologies, we notice the amount of messages to obtain a high
success rate is very sensitive to the value of K, the number of nodes to which a
query is forwarded.

Evaluation of P2P Algorithms for Probabilistic Trust Inference 255

The main challenge in using any of the studied algorithms is to set the value of
TTL. To improve the performance, we need to consider how to assign the TTL
value when a search algorithm is initialized, and how to efficiently control or
avoid unnecessary messages being forwarded when the target has been located.

To avoid excessive messages being forwarded, adaptive termination can be
considered. When a trust path is located, the requester broadcasts “stop search-
ing” messages to other nodes to terminate the search process by dropping query
messages whose TTL does not reach 0 yet. In terms of message overhead, the
Expanding Ring search algorithm [10] can be a potential solution. The Expand-
ing Ring algorithm starts searching with a small TTL value. When TTL reaches
0 and the search is not completed, the TTL value is incremented by 1 and the
search is continued.

6 Conclusion

In this paper, we used discrete event simulation and Monte Carlo techniques
to evaluate the suitability of using peer-to-peer algorithms for discovering trust
paths and infering the trust value of a set of trust paths. This paper distinguishes
itself from earlier work by considering the effort needed to find multiple paths,
and by the computation of the overall trust value of a set of paths. We studied
variations of the flooding search algorithm, in random as well as scale-free net-
works. The main conclusion is that all the variants of flooding perform almost
equal when considering the message overhead for a certain probability of finding
paths. When close to all paths need to be found, flooding outperforms selective
flooding alternatives, since these alternatives miss out on certain paths.

Acknowledgements

We thank Emerson Ribeiro de Mello for the earlier PeerSim implementation [2],
and for discussions on the current paper.

References

1. Jonczy, J., Wüthrich, M., Haenni, R.: A probabilistic trust model for GnuPG. In:
23C3, 23rd Chaos Communication Congress, Berlin, Germany, pp. 61–66 (2006)

2. Ribeiro de Mello, E., van Moorsel, A.P.A., da Silva Fraga, J.: Evaluation of P2P
search algorithms for discovering trust paths. In: Wolter, K. (ed.) EPEW 2007.
LNCS, vol. 4748, pp. 112–124. Springer, Heidelberg (2007)

3. Michiardi, P., Molva, R.: Core: a collaborative reputation mechanism to enforce
node coopeation in mobile ad hoc networks. In: Proceedings of the IFIP TC6/TC11
Sixth Joint Working Conference on Communications and Multimedia Security, pp.
107–121. Kluwer, B. V, Dordrecht (2002)

4. Kamvar, S.D., Schlosser, M.T., Garcia-Molina, H.: The eigentrust algorithm for
reputation management in P2P networks. In: WWW 2003: Proceedings of the
12th International Conference on World Wide Web, pp. 640–651. ACM, New York
(2003)

256 H. Zhang and A. van Moorsel

5. Srivatsa, M., Xiong, L., Liu, L.: Trustguard: countering vulnerabilities in reputation
management for decentralized overlay networks. In: WWW 2005: Proceeding of the
14th international conference on World Wide Web, pp. 422–431. ACM, New York
(2005)

6. Nandi, A., Ngan, T.W., Singh, A., Druschel, P., Wallach, D.S.: Scrivener: Pro-
viding incentives in cooperative content distribution systems. In: Alonso, G. (ed.)
Middleware 2005. LNCS, vol. 3790, pp. 270–291. Springer, Heidelberg (2005)

7. Aringhieri, R., Damiani, E., Vimercati, S.D.C.D., Paraboschi, S., Samarati, P.:
Fuzzy techniques for trust and reputation management in anonymous peer-to-peer
systems. J. Am. Soc. Inf. Sci. Technol. 57(4), 528–537 (2006)

8. Walsh, K., Sirer, E.G.: Experience with an object reputation system for peer-to-
peer filesharing. In: NSDI 2006: Proceedings of the 3rd conference on 3rd Sym-
posium on Networked Systems Design & Implementation. USENIX Association
(2006)

9. Hoffman, K., Zage, D., Nita-Rotaru, C.: A survey of attack and defense techniques
for reputation systems. Technical report, Purdue University (2007)

10. Lv, Q., Cao, P., Cohen, E., Li, K., Shenker, S.: Search and replication in unstruc-
tured peer-to-peer networks. In: ICS 2002: Proceedings of the 16th international
conference on Supercomputing, pp. 84–95. ACM, New York (2002)

11. Jøsang, A., Gray, E., Kinateder, M.: Simplification and analysis of transitive trust
networks. Web Intelligence and Agent Systems 4(2), 139–161 (2006)

12. Mahoney, G., Myrvold, W., Shoja, G.C.: Generic reliability trust model. In: Third
Annual Conference on Privacy, Security and Trust (2005)

13. Ball, M.O., Magnanti, T.L., Monma, C.L., Nmehauser, G.L.: Network Models.
North Holland, Amsterdam (1995)

14. Fishman, G.S.: Monte Carlo: concepts, algorithms, and applications. Springer, Hei-
delberg (1995)

15. Jesi, G.P.: Peersim: A peer-to-peer simulator (2004),
http://peersim.sourceforge.net

16. Albert, R., Barabási, A.: Statistical mechanics of complex networks. Reviews of
Modern Physics 74 (2002)

17. Gnutella: The Gnutella Protocol Specification v0.4 (2001)
18. Yang, B., Garcia-Molina, H.: Improving search in peer-to-peer networks. In: ICDCS

2002: Proceedings of the 22nd International Conference on Distributed Computing
Systems, pp. 5–14. IEEE Computer Society, Los Alamitos (2002)

19. Defude, B.: P2P simulation with peersim (January 2007),
http://stromboli3.int-edu.eu/ bernard/ASR/projets/soutenances/
Ranaivo-Sabourin/rapport-Simulation P2P.pdf

20. Cochran, W.: Sampling Techniques, 3rd edn. Wiley and Sons, Chichester (1977)

http://peersim.sourceforge.net
http://stromboli3.int-edu.eu/~bernard/ASR/projets/soutenances/Ranaivo-Sabourin/rapport-Simulation_P2P.pdf
http://stromboli3.int-edu.eu/~bernard/ASR/projets/soutenances/Ranaivo-Sabourin/rapport-Simulation_P2P.pdf

Approximation for Multi-service Systems with

Reservation by Systems with
Limited-Availability

Maciej Stasiak and S�lawomir Hanczewski

Chair of Telecommunication and Computer Networks,
Poznań University of Technology,

Piotrowo 3A, 60-965 Poznań, Poland
Tel.: +48 61 6653905, Fax: +48 61 6653922

{stasiak,shancz}@et.put.poznan.pl
http://www.et.put.poznan.pl

Abstract. The paper presents a new method for modeling systems with
reservation. The method is based on the generalized ideal grading model
servicing multi-rate traffic. The paper proposes an algorithm for deter-
mining such an availability value in the ideal grading that causes block-
ing equalization of different classes of calls. The proposed method was
worked out for integer and non-integer values of the availability para-
meters. A comparison of the analytical results with the simulation data
proves high accuracy of the proposed method.

Keywords: Markov Processes, reservation, Erlang’s ideal grading,
availability.

1 Introduction

The ideal grading model with single-service traffic is one of the oldest traffic
engineering models. The appropriate formula to determine the blocking proba-
bility in the group was worked out by A. K. Erlang as early as 1917 [1]. The
formula is called Erlang’s interconnection formula. Even though the ideal grad-
ing did not find any practical applications in the past due to a large number of
load groups, the system was used for many years for approximate modeling of
other telecommunications systems [2]. As it turned out that the characteristics
and properties of the majority of homogenous grading were similar to those of
ideal limited-availability groups. For example, the Erlang’s ideal grading was
used for modeling outgoing groups in single-service and multi-service switching
networks [3], [4]. The ideal grading was also used to model switching networks
with multicast connections [5]. In [8], an approximate ideal grading model ser-
vicing multi-rate traffic, which assumes identical availability value for all classes
of calls, is proposed. The present paper proposes a generalized model of the ideal
grading servicing multi-rate traffic in which each call class is characterized by a
different availability. Such an approach has made it possible to model the values
of the blocking probabilities of particular classes depending on the changes in

N. Thomas and C. Juiz (Eds.): EPEW 2008, LNCS 5261, pp. 257–267, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.et.put.poznan.pl

258 M. Stasiak and S. Hanczewski

the value of the availability parameter. The paper shows that with appropriately
matched availability parameters in the ideal grading it is possible to equalize all
blocking probabilities, which is, in fact, equivalent to the operation of the reser-
vation mechanism in the full-availability group with multi-rate traffic. The paper
also proposes an appropriate algorithm for determining such an availability value
that effects in the blocking equalization in different classes of calls.

The obtained results are promising and indicate further possibilities in im-
plementing the generalized formula of the ideal grading model in determining
characteristics and properties of other systems. This approach can also be very
effective in modeling systems for 3G mobile networks.

2 State-Dependent Multi-rate System

Let us consider a multi-rate system with a capacity of V basic bandwidth units
(BBU)1. The system services M independent classes of Poisson traffic streams
having the intensities: λ1, λ2,. . .,λM . A class i call requires ti basic bandwidth
units to set up a connection. The holding time for the calls of particular classes
has an exponential distribution with the parameters: µ1, µ2,. . .,µM . Thus the
mean traffic offered to the system by the class i traffic stream is equal to:

ai = λi/µi. (1)

The multi-rate systems can be determined by the multi-dimensional Markov
process. This process cannot be used for practical calculations because of an
excessive number of states in which the process can be found. However, in many
cases the multi-dimensional process can be approximated by the one-dimensional
Markov chain, which can be described by the so-called generalised Kaufman-
Roberts recursion[9], [10]:

nP (n) =
M∑
i=1

aitiσi (n − ti) P (n − ti) , (2)

where:
P (n) – the state probability, i.e. the probability of an event that there are n busy
BBUs in the system,
σi(n) – the conditional probability of passing between the adjacent states of the
process associated with the class i call stream. The way of determining the value
of this parameter depends on the kind of a considered state-dependent system.
If the probabilities of passing are equal to one for all states, the equation (2) is
reduced to the Kaufman-Roberts recursion [6], [7]:

nP (n) =
M∑
i=1

aitiP (n − ti) , (3)

1 The BBU is defined as the greatest common divisor of equivalent bandwidths of all
call streams offered to the system [12].

Approximation for Multi-service Systems 259

Formula (3) determines the occupancy distribution in the state independent
system i.e. full-availability group with multi-rate traffic streams.

The conditional probability of passing (σi(n)) in the state-dependent system
(equation (2)) can be written as follows:

σi(n) = 1 − γi(n), (4)

where γi(n) is the blocking probability for class i calls in a considered system,
calculated on the assumption that in this system n BBUs are busy. Therefore,
the total blocking probability in the state-dependent multi-rate system for class
i calls can be expressed by the following formula:

Ei =
V∑

n=0

γi(n)P (n), (5)

Figure 1 shows a graphic interpretation of the process represented by the
equation (2) for two class calls (t1 = 1, t2 = 2). The symbol yi(n) denotes the
reverse transition rates of a class i service stream outgoing from state n [11].
The values of the parameters, however, are not needed for a determination of
the occupancy distribution in a state-dependent system (equations (2)).

1−n n
)(1111 −nta σ

11 tny)(
1+n 2+n

)(1222 −nta σ

11 1 tny)(+ 11 2 tny)(+

22 1 tny)(+ 22 2 tny)(+

)(nta 222 σ

)(nta 111 σ)(1111 +nta σ

Fig. 1. A fragment of one-dimensional Markov chain in the state-dependent multi-rate
system (t1 = 1, t2 = 2)

3 Full-Availability Group with Reservation (FAGR)

The aim of the introduction of the reservation mechanism in telecommunications
systems is to ensure similar values of the parameters of the quality of servicing
for calls of different classes. For this purpose, the reservation threshold Qi for
each traffic class is designated. The parameter Qi determines the borderline state
of a system, in which servicing class i calls is still possible. All states higher than
Qi belong to the so called reservation space Ri, in which class i calls will be
blocked:

Ri = V − Qi. (6)

According to the equalisation rule [13], [14], [15], the blocking probability in the
full-availability group will be the same for all call stream classes if the reservation

260 M. Stasiak and S. Hanczewski

threshold for all traffic classes is identical and equal to the difference between
the total capacity of a group and the value of resources required by the call of
maximum demands (tM = tmax):

Q = V − tM . (7)

The occupancy distribution in the full-availability group with reservation
(FAGR) can be calculated on the basis of equation (2) in which conditional
probabilities of passing are determined in the following way:

σi(n) = { 0 for n > Q
1 for n ≤ Q

(8)

Such a definition of the parameter σi(n) means that in states higher than
Q (reservation space), calls of all traffic classes will be blocked.

The equalized blocking probability for all traffic classes in the FAGR can be
determined as follows:

Ei =
V∑

n=Q+1

P (n). (9)

4 Erlang’s Ideal Grading (EIG)

The structure of an Erlang’s ideal grading (EIG) is characterized by three para-
meters: availability d, capacity V and the number of grading groups g. Erlang’s
ideal grading is a system in which the conditional probability of passing between
the adjacent states does not depend on the call intensity, and can be determined
combinatorially [1]. The number of grading groups of an Erlang’s ideal grading
is equal to the number of possible ways of choosing the d channels (BBUs) from
their general number V , whereby two grading groups differ from each other by at
least one channel. This means that, a separate grading group is intended for each
possible combination of d channels. With the same traffic offered to all grading
groups and the random hunting strategy, the load of each channel of an Erlang’s
ideal grading is identical. Moreover, for each combination of busy channels, the
occupancy distribution in each grading group is the same. This means, that for
an arbitrary ”busy” state in n channels (0 ≤ n ≤ V) in the considered grading,
no matter how many n channels from among the possible V channels are busy,
the probability of busy j channels of a given grading group (0 ≤ n ≤ V) is equal
to the probability of busy j channels in each other grading group.

4.1 Generalized Model of Erlang’s Ideal Grading

In [8], a model of the ideal grading with multi-rate traffic is proposed. The model
assumes that the availability for all classes of calls is the same.

Let us consider now the generalized model in which each call class is charac-
terized by a different availability. This means that a different number of grading

Approximation for Multi-service Systems 261

g1=3

d1=2

g2=1

d2=3

Fig. 2. Model of the ideal grading with different availabilities

groups is related to each of the call class. Figure 2 shows a simple model of the
ideal grading with the capacity V = 3 BBU’s. The group services two classes of
calls with the availability d1 = 2, d2 = 3. Hence, the number of load groups for
relevant call classes is equal to:

g1 =
(

V
d1

)
=

(
3
2

)
= 3, g2 =

(
V
d2

)
=

(
3
3

)
= 1

The occupancy distribution in an Erlang’s ideal grading with multi-rate traffic
can be determined on the basis of the recursive formula (2). To determine con-
ditional blocking probabilities in the ideal grading with different availabilities
for different call classes, model [8] is used, in which the parameters related to a
given call of class i are made dependent on the availability di attributed to this
class (in model [8] these parameters were dependent on the shared availability
d). Due to ideal grading definition, the distribution of busy outgoing BBU’s is
identical in each group and the conditional probability of blocking of class i calls
is equal to the blocking probability in one (given) grading group:

γi(n) = Pi,n =
ki∑

x=di−ti+1

PV,di(n, x), (10)

where:
ki = n, if (di − ti + 1) ≤ (n) < di,
ki = di, if n ≥ d.

The parameter PV,di(n, x), is the conditional probability of x busy BBU’s
in one grading group, when the total number of busy BBU’s in the system is

262 M. Stasiak and S. Hanczewski

equal to n. The probability PV,di(n, x) can be described by the hypergeometrical
distribution [8]:

PV,di(n, x) =
(

di

x

) (
V − di

n − x

) / (
V
n

)
. (11)

After determining all probabilities γi(n), the blocking probability for class
i calls in the ideal grading carrying a mixture of different multichannel traffic
streams can be calculated according to the following formula:

Ei =
V∑

n=di−ti+1

P (n)γi(n). (12)

4.2 Generalized Model of Erlang’s Ideal Grading for Non-integer
Availability

Formulae (10)–(12) enable to determine the values of blocking probabilities in
the ideal grading only for integer values of the parameter di. Therefore, a special
method for determining the values of the blocking probability in the ideal grading
for non-integer value of the availability parameter has been worked out. In the
proposed method (when the value of the parameter di takes on non-integer val-
ues), a given call of class i is replaced by two fictitious classes with appropriately
attributed integer availability values (di1, di2) and the offered traffic (Ai1, Ai2).
The values of these parameters are defined in the following way:

di1 = �di�, (13)

di2 = di!. (14)

The traffic offered by the new fictitious call classes is respectively equal to:

Ai1 = Ai[1 − (di − di1)], (15)

Ai2 = Ai(di − di1), (16)

where the difference (di − di1) determines the fractional part of the parameter
di. Such a definition of the parameters Ai1, Ai2, di1, di2 means that the values
of the fictitious traffic Ai2 is directly proportional to the fractional part of the
availability parameter, i.e. to ∆i = di − di1, while the value of the fictitious
traffic Ai1 is directly proportional to the complement ∆i , i.e. to the value
1 − ∆i = 1 − (di − di1) .

Let us consider an ideal grading with the capacity V and the number of ser-
viced traffic classes equal to M . To simplify the description, let us assume that
only the availability parameter of one class, i.e. of class i, takes on non-integer
values. After replacing class i with two fictitious classes: i1 and i2, with the
attributed availability values di1, di2 and the traffic intensity Ai1, Ai2 (formulae

Approximation for Multi-service Systems 263

(13)–(16)), it is possible, on the basis of (10)–(12), to determine blocking prob-
abilities of all call classes, including the blocking probabilities of new classes of
calls Ei1 and Ei2 . Now the blocking probability of calls of class i for non-integer
availability di can be determined (estimated) in the following way:

Ei =
Ai1Ei1 + Ai2Ei2

Ai
. (17)

In the case of a greater number of classes with non-integer availability, each call
class is replaced with two fictitious classes with the parameters determined by
formulae (13)–(16). Further calculations are performed in the same way as in
the case of two call classes. The results of the simulation experiments carried
out by the authors of the article have entirely confirmed high accuracy of the
proposed solution.

5 Blocking Probability Equalization in Erlang’s Ideal
Grading with Multi-rate Traffic

Let us consider an ideal grading servicing two classes of calls. The calls of par-
ticular classes require respectively t1 and t2 BBUs (t1 < t2). The capacity of
the group is equal to V , while the availability for each of the classes varies and
equals respectively d1 and d2. In the considered group, changes in the value of
the parameters d1 and d2 will result in changes in respective values of blocking
probabilities of individual classes. In a particular case, it is possible to equal-
ize the blocking probability of all serviced classes of calls. The study carried
out by the authors has proved that the lowest value of the equalized blocking
probability is obtained under the assumption that the availability of the second
class of calls is constant and is equal to the capacity of the system, i.e. d2 = V .
Additionally, it turned out that the defined equalized blocking probability in
the ideal grading following the above assumption is the same as the equalized
blocking probability in the full-availability group with reservation (assuming the
same capacity of the systems and the identical structure of the offered traffic). In
order to determine the value of the parameter d1 that effects in the equalization
of blocking probabilities of serviced calls, the following iterative algorithm can
be employed. In the first step of the algorithm, the initial value of the parameter
d1 is assumed (for example, d

(0)
1 = t1) and the blocking probability E

(1)
1 and

E
(1)
2 is determined:

(E(1)
1 , E

(1)
2) = F (A1, t1, d

(0)
1 , A2, t2, d2 = V), (18)

where the function F determines blocking probabilities of calls in the ideal grad-
ing on the basis of formulae (10)–(12).

Each step of the iteration determines the successive values of the blocking
probability on the basis of the value of the parameter d1, determined in the
previous step of the iteration, while the remaining parameters of the function F

264 M. Stasiak and S. Hanczewski

do not change:

(E(n)
1 , E

(n)
2) = F (A1, t1, d

(n−1)
1 , A2, t2, d2 = V). (19)

The iterative process terminates when the following condition is met:∣∣∣|E(n−1)
1 − E

(n−1)
2 | − |E(n)

1 − E
(n)
2 |

∣∣∣
|E(n)

1 − E
(n)
2 |

< ε (20)

where ε is the relative error assumed in the calculation. The availability para-
meter in each of the steps of the process is determined in the following way:

d
(n)
1 = d

(n−1)
1 + ∆d(n) (21)

where ∆d(0) = 1. The values of the successive increments of the availability
depend on the mutual relationships of blocking probabilities. Therefore, before
the determination of the increment ∆d(n), the following additional condition is
checked in each of the steps of the iterative process:

E
(n)
1 > E

(n)
2 (22)

If the condition (22) is fulfilled, i.e. the blocking probability E
(n)
1 is greater

than E
(n)
2 , then the value of the parameter d

(n)
1 is increased by the adopted

value ∆d(n) = ∆d(n−1) . Otherwise, the availability value for the next step will
be determined on the basis of the following formula:

d
(n)
1 = d

(n−1)
1 − ∆d(n−1) + ∆d(n) (23)

where a new value of the increment ∆d(n) is appropriately decreased in relation
to ∆d(n−1) (for example, it is assumed in the article that: ∆d(n) = ∆d(n−1)/10 .
Such an approach means that when the value E

(n)
1 < E

(n)
2 , i.e. when the blocking

probability of the second class ”exceeds” the value of the blocking probability for
the first class, then the algorithm will ”retract” to the previous step (in which
E

(n)
1 > E

(n)
2), and, in the next step, the probability E1 starts to approach the

probability E2 with lower availability increments.

6 Numerical Examples

To prove the accuracy and correctness of the proposed analytical model, the
results of the analytical calculations were compared with the results of the sim-
ulation experiments with sample groups. The operation of the proposed model
is presented with the example of the Erlang’s ideal grading with the capacity of

Approximation for Multi-service Systems 265

1,00E-04

1,00E-03

1,00E-02

1,00E-01

1,00E+00

0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 1,1 1,2 1,3 1,4 1,5

a

 E

Fig. 3. Blocking probability in Erlang’s ideal grading (V = 30 BBUs). Simulations:
EIG ��� t1 = 1; ××× t2 = 3; Calculations: EIG —— t1 = 1; – – – t2 = 3; Calculations:
FAGR – - — t1 = 1; – - - – t2 = 3.

1,00E-02

1,00E-01

1,00E+00

0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 1,1 1,2 1,3 1,4 1,5

a

 E

Fig. 4. Blocking probability in Erlang’s ideal grading. Simulations: EIG ��� t1 = 1;
××× t2 = 9; Calculations: EIG —— t1 = 1; – – – t2 = 9; Calculations: FAGR – - —
t1 = 1; – - - – t2 = 9.

V = 30 BBU’s servicing two classes of calls. Further diagrams show the results
for the following mixture of classes: t1 = 1, t2 = 3, a1 : a2 = 1 : 1 (Figure 3),
t1 = 1, t2 = 9, a1 : a2 = 1 : 1 (Figure 4), t1 = 2, t2 = 5, a1 : a2 = 1 : 1 (Figure 5)
in relation to the offered to one BBU: a =

∑M
i=1

aiti

V . The diagrams also show the
results of the calculations obtained for the full-availability group with multi-rate
traffic and reservation that equalize losses, i.e. the reservation space R = t2. A
comparison of the results for the Erlang’s ideal grading and the full-availability
group with reservation shows that the blocking probability equalization in both
systems takes on identical values. Thus, systems with reservation can be modeled
by the Erlang’s ideal grading. Diagram 6 presents the changes in the parameter
d1 (in the function of traffic offered to one BBU of the group) that effect in the
equalization of the blocking probability in the ideal grading. It is noticeable that

266 M. Stasiak and S. Hanczewski

1,00E-02

1,00E-01

1,00E+00

0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 1,1 1,2 1,3 1,4 1,5

a

Fig. 5. Blocking probability in Erlang’s ideal grading. Simulations: EIG ��� t1 = 2;
××× t2 = 7; Calculations: EIG —— t1 = 2; – – – t2 = 7; Calculations: FAGR – - —
t1 = 2; – - - – t2 = 7.

0

2

4

6

8

10

12

14

0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 1,1 1,2 1,3 1,4 1,5

a

 d1

t1=1, t2=3

t1=1, t2=9

t1=2, t2=7

Fig. 6. Changes in parameter d1 in relation to offered traffic

the value of the parameter d1, with which the equalization of losses ensues, is
not constant and decreases with the increase of the offered traffic. All the results
presented in the diagrams confirm the accuracy of the adopted assumptions for
the analytical model.

7 Conclusions

The article presents a method for modeling systems with reservation by limited-
availability systems. The operation of the method is based on a generalized Er-
lang’s ideal grading servicing multi-rate traffic. In order to increase the accuracy
of the model, a special algorithm for determining all parameters of a limited-
availability system has been worked out under the assumption that availabilities
of individual classes of calls can take on non-integer values. A comparison of the
analytical results with the simulation numerical results proves high accuracy of

Approximation for Multi-service Systems 267

the proposed method. The obtained results indicate a possibility of implementing
the generalized model of Erlang’s ideal grading in determining characteristics of
other systems. Such an approach can prove very beneficial in the case of modeling
systems in 3G mobile networks.

References

1. Brockmeyer, E., Halstrom, H., Jensen, A.: The life and works of A. K. Erlang.
Acta Polytechnica Scandinavica 287 (1960)

2. Lotze, A.: History and development of grading theory. In: 5th International Tele-
traffic Congress, New York, pp. 148–161 (1967)

3. Ershova, E.B., Ershov, V.A.: Cifrowyje sistiemy raspriedielenia informacji. Radio
i swiaz, Moscow (1983) (in Russian)

4. Stasiak, M.: Blocage interne point a point dans les reseaux de connexion. Ann.
Telecommun. 43, 561–575 (1988)

5. Hanczewski, S., Stasiak, M.: Point-to-group blocking in 3-stage switching networks
with multicast traffic streams. In: Dini, P., Lorenz, P., de Souza, J.N. (eds.) SAPIR
2004. LNCS, vol. 3126, pp. 219–230. Springer, Heidelberg (2004)

6. Kaufman, J.S.: Blocking in shared resource environment. IEEE Transactions on
Communications 29, 1474–1481 (1981)

7. Roberts, J.W.: A service system with heterogeneous user requirements. Perfor-
mance of data communications systems and their applications. Nort Holland Pub.
Co., Amsterdam (1981)

8. Stasiak, M.: An approximate model of a switching network carrying mixture of
different multichannel traffic streams. IEEE Transactions on Communications 41,
836–840 (1993)

9. Beshai, M., Manfield, D.: Multichannel services performance of switching networks.
In: 12th International Teletraffic Congress, Torino, Italy, pp. 857–864 (1988)

10. Stasiak, M.: Blocking probability in a limited-availability group carrying mixture
of different multichannel traffic streams. Annals of Telecommunications 48, 71–76
(1993)

11. Stasiak, M., Glabowski, M.: A simple approximation of the link model with reser-
vation by a one-dimensional Markov chain. Journal of Performance Evaluation 41,
195–208 (2000)

12. Roberts, J.W., Mocci, V., Virtamo, I. (eds.): Broadband Network Teletraffic. Final
Report of Action COST 242. Commission of the European Communities. Springer,
Heidelberg (1996)

13. Roberts, J.W. (ed.): Performance Evaluation and Design of Multiservice Networks.
Final Report COST 224. Commission of the European Communities (1992)

14. Roberts, J.W.: Teletraffic models for the Telcom 1 integrated services network. In:
10th International Teletraffic Congress, Montreal, Canada, p. 1.1.2 (1983)

15. Tran-Gia, P., Hubner, F.: An analysis of trunk reservation and grade of service bal-
ancing mechanisms in multiservice broadband networks. In: International Teletraf-
fic Congress Seminar: Modeling and Performance evaluation of ATM technology,
La Martynique, pp. 83–97 (1993)

Author Index

Becker, Steffen 17
Bernardo, Marco 64
Bradley, Jeremy T. 79
Buchmann, Alejandro 48
Bušić, Ana 227
Butterweck, Stephan 48

Clark, Allan 2, 125

Dingle, Nicholas J. 141
Djoudi, Lamia 95
Duguid, Adam 2

Feyaerts, Bart 197
Fourneau, Jean-Michel 110, 227

Gilmore, Stephen 2, 125
G�l ↪abowski, Mariusz 152
Guerrero, Pablo E. 48

Hanczewski, S�lawomir 257
Haverkort, Boudewijn R. 1

Kloul, Lëıla 95
Knottenbelt, William J. 141
Koziolek, Heiko 17

Martens, Anne 17
Moorsel, Aad van 242

Parniewicz, Damian 168

Reinecke, Philipp 181
Reussner, Ralf 17

Sachs, Kai 48
Saffer, Zsolt 212
Stasiak, Maciej 168, 257

Telek, Miklós 212
Tribastone, Mirco 2

Wang, Lei 141
Wiewióra, Janusz 168
Wittevrongel, Sabine 197
Wolter, Katinka 181
Woodside, Murray 32
Wu, Xiuping 32

Zapotoczky, Johannes 181
Zhang, Huqiu 242
Zwierzykowski, Piotr 168

	Title Page
	Preface
	Organization
	Table of Contents
	Performance and Dependability Evaluation: Successes, Failures and Challenges
	Partial Evaluation of PEPA Models for Fluid-Flow Analysis
	Introduction
	Case Study: Key Distribution Centres
	Partial Evaluation
	Analysis
	Markovian Analysis
	Analytical Solution
	Simulation and Fluid-Flow Analysis

	Comparison
	Conclusions
	References

	An Empirical Investigation of the Applicability of a Component-Based Performance Prediction Method
	Introduction
	Palladio Component Model
	Empirical Investigation
	Questions and Metrics
	Experiment Design
	Student Teaching
	Experiment Tasks

	Results
	What is the Quality of the Created Performance Prediction Models?
	What Are the Reasons for Potentially Deviating Predictions?
	Lessons Learned

	Threats to Validity
	Related Work
	Conclusions
	References

	A Calibration Framework for Capturing and Calibrating Software Performance Models
	Introduction
	A Calibration Environment for Software Performance Models
	Software Performance Models and Layered Queueing

	Calibration Tests
	Test Interpretation: Model Estimation
	Maximum-Likelihood Estimation
	Sequential Estimation and the Extended Kalman Filter (EKF)

	A Voice-over-IP (VoIP) System
	Experiments
	Model Validation

	Simulation Study
	Experiments

	Conclusions and Future Research
	References

	Performance Evaluation of Embedded ECA Rule Engines: A Case Study
	Introduction and Motivation
	Background
	ECA Rule Engines
	Performance Analysis

	Analytical Performance Model
	A Simplified Model: Event Paths
	Queueing Behavior
	Performance Evaluation Tool Set

	Case Study
	Identification of Event Paths
	Measured Service Times
	Queueing Behavior
	CPU Utilization

	Conclusions and Future Work
	References

	Towards State Space Reduction Based on T-Lumpability-Consistent Relations
	Introduction
	Motivating Example: Incremental Services
	Markovian Behavioral Equivalences
	Exit Rates and Computations
	Markovian Bisimilarity
	Markovian Testing Equivalence
	Markovian Trace Equivalence

	Induced CTMC-Level Relations
	An Axiom-Based View of State Space Reduction
	Aggregation Algorithm for T-Lumpability
	Conclusion
	References

	A Ticking Clock: Performance Analysis of a Circadian Rhythm with Stochastic Process Algebra
	Introduction
	CircadianClock
	Stochastic Process Models
	Stochastic π-Calculus Model
	PEPA
	Modelling Differences
	Stochastic π-Calculus Model
	PEPA Model
	Parameters

	Evaluation
	Conclusion and Future Work
	References

	Assembly Code Analysis Using Stochastic Process Algebra
	Introduction
	The Approach
	MAQAO
	PEPA
	The Proposed Approach

	Case Study
	The Original Code
	The noUnroll Transformation
	Index Inversion Transformation
	Breaking the Dependencies

	Numerical Results
	Conclusions
	References

	Product Form Steady-State Distribution for Stochastic Automata Networks with Domino Synchronizations
	Introduction
	Domino Synchronization
	Product Form Solution
	Proof of the Theorem

	Examples
	Gelenbe’s Networks with Customer Triggered Movement
	Three Deletions
	Jackson and Gelenbe’s Network
	The Relay Jumps to Zero
	Networks with More Complex Effect
	Product Form for PEPA Models

	Conclusions
	References

	State-Aware Performance Analysis with eXtended Stochastic Probes
	Introduction
	Related Work
	State and Probe Specifications
	Implementation
	An Example Scenario
	The Round-Robin Model
	The Queue Model
	The Random Model
	The Passage-Time Analysis
	Splitting the Analysis

	Using eXtended Stochastic Probes
	Discussion of Results

	Conclusions
	References

	Natural Language Specification of Performance Trees
	Introduction
	Performance Trees
	Structured Grammar for Performance Tree Specification
	Using the Natural Language Query Builder

	Case Study
	Conclusion
	References

	Recurrent Method for Blocking Probability Calculation in Multi-service Switching Networks with BPP Traffic
	Introduction
	Switching Networks Calculations
	Basic Assumptions
	Link Models in Switching Networks
	Effective Availability Parameter
	Recurrent Method of Blocking Probability Calculation in Switching Networks

	Calculation and Simulation Results
	Conclusions
	References

	An Approximate Model of the WCDMA Interface Servicing a Mixture of Multi-rate Traffic Streams with Priorities
	Introduction
	WCDMA Interface in the UMTS Network
	Model of the System
	Systems with Two and Three Priorities
	System with \n Priorities

	Numerical Examples
	Conclusions
	References

	Performance Analysis of Dynamic Priority Shifting
	Introduction
	Priority Shifting
	Applicability Criteria
	Interesting Properties of Shift Operators
	Some Shift Operators
	IEEE 802.11e WLAN Access Categories
	Economic Feasibility of Priority Shifting

	The Petri Net Model
	Model Parameters
	Model Characteristics and Limitations

	Analysis
	Results

	Conclusion and Further Work
	References

	Performance Analysis of a Priority Queue with Place Reservation and General Transmission Times
	Introduction
	ModelDescription
	Markovian State Description and System Equations
	Equilibrium Distribution of the System State
	Distribution of the Packet Delay
	The PGF of the Class-1 Packet Delay
	The PGF of the Class-2 Packet Delay
	Moments of the Packet Delay

	Numerical Results and Discussion
	References

	Analysis of $BMAP/G/1$ Vacation Model of Non-$M/G/1$-Type
	Introduction
	Model and Notation
	$BMAP$ Process
	The $BMAP/G/1$ Queue with Server Vacation

	Stationary Number of Customers in the Vacation Period
	Service Discipline Independent Stationary Relations
	Vector GF of the Stationary Number of Customers
	The Mean of the Stationary Number of Customers

	Vacation Models of Non-M/G/1-Type
	Vacation Model with Gated Discipline
	Vacation Model with G-Limited Discipline

	Numerical Example
	FinalRemarks
	References

	Stochastic Bounds for Partially Generated Markov Chains: An Algebraic Approach
	Introduction
	Some Fundamental Results on Stochastic Bounds
	CMC and Stochastic Bounds

	Element-Wise Bounds for Matrix Z
	Main Idea

	Finding Bounds Using Incomplete Information
	Less Constrained Matrices
	Iteration
	Partial Summations
	If the Sum of Columns is Known
	Examples

	Concluding Remarks
	References

	Evaluation of P2P Algorithms for Probabilistic Trust Inference in a Web of Trust
	Introduction
	Problem Definition
	Trust Path Discovery Problem
	Trust Inference Problem

	Methodology
	Topologies
	P2P Search Algorithms
	Metrics

	Simulation Methodology
	Peersim
	Sampling Method
	Trust Computation

	Results
	Results in Random Networks
	Results in Scale-free Networks
	Discussion

	Conclusion
	References

	Approximation for Multi-service Systems with Reservation by Systems with Limited-Availability
	Introduction
	State-Dependent Multi-rate System
	Full-Availability Group with Reservation (FAGR)
	Erlang’s Ideal Grading (EIG)
	Generalized Model of Erlang’s Ideal Grading
	Generalized Model of Erlang’s Ideal Grading for Non-integer Availability

	Blocking Probability Equalization in Erlang’s Ideal Grading with Multi-rate Traffic
	Numerical Examples
	Conclusions
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

